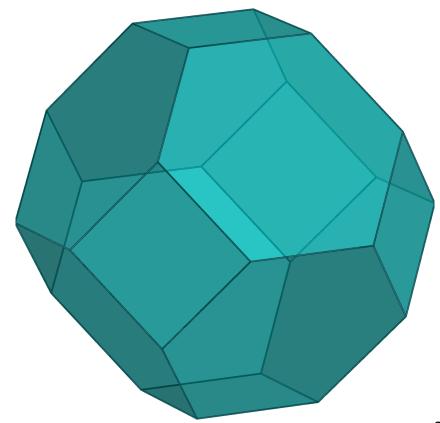


HOW TO SLICE A POLYTOPE

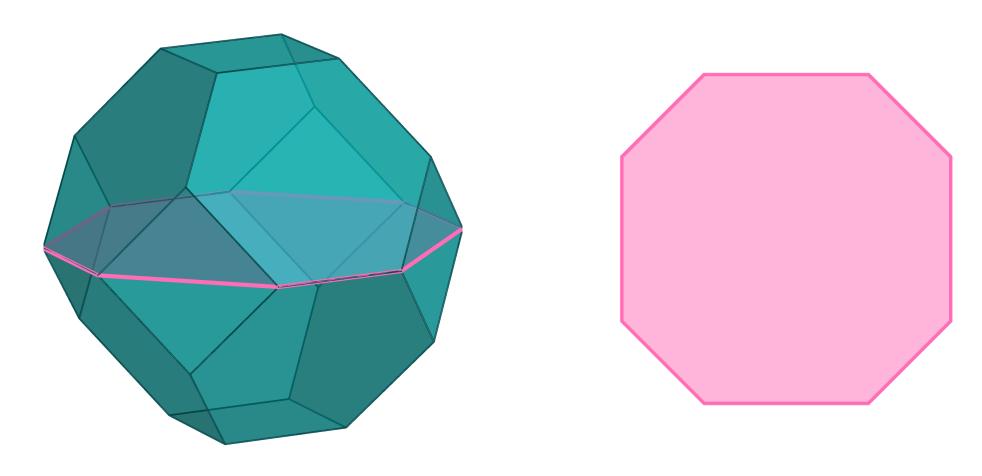
joint work with Chiara Meroni and Jesús A. De Loera. arXiv: 2304.14239

Marie-Charlotte Brandenburg

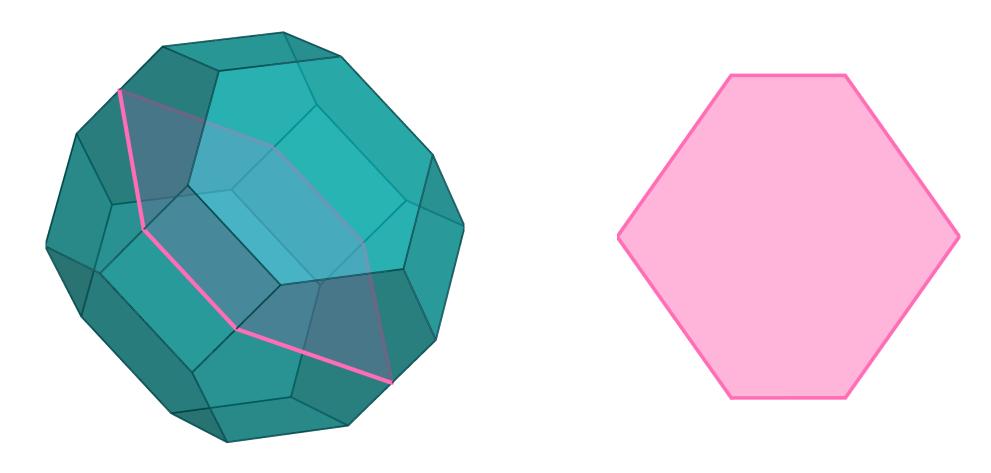
Combinatorics Seminar KTH Royal Institute of Technology 13 Match 2024



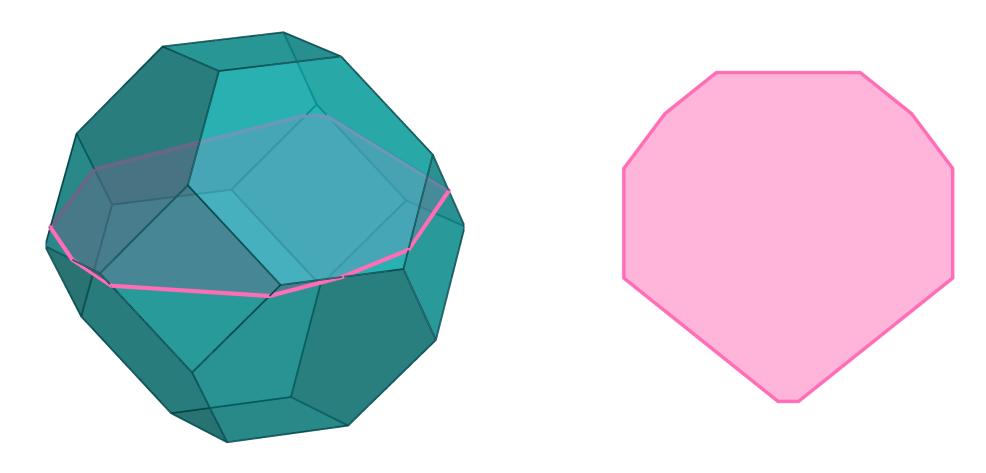
$$P = \text{conv}(\ (\sigma(1), \sigma(2), \sigma(3), \sigma(4)) \ | \ \sigma \in S_4) - \frac{3}{2}(1, 1, 1, 1)$$
$$= \text{conv}(\ (1, 2, 3, 4), \ (1, 2, 4, 3), \ \dots, \ (4, 3, 2, 1) \) - \frac{3}{2}(1, 1, 1, 1)$$



Affine slice of maximum volume



Central slice of minimum volume



Affine slice with maximum number of vertices

JOINT WORK WITH

Chiara Meroni Harvard

Jesús A. De Loera UC Davis

MB, Chiara Meroni, and Jesús A. De Loera. *The Best Ways to Slice a Polytope*. 2023. arXiv: 2304.14239

WHO WANTS TO COMPUTE (EXTREMAL) SLICES OF POLYTOPES?

MOTIVATION

- Maximal volume slice: What is the slice of P with maximal volume? [Ball '89, Meyer-Pajor '88, Webb '96, Pournin '22, ...]
- Bourgain's slicing problem: Does there exist c>0 such that for any convex body $K\subset\mathbb{R}^d$ with $\operatorname{vol}(K)=1$ there exist a hyperplane H such that $\operatorname{vol}(K\cap H)>c$? [Bourgain '84, Klartag-Lehec '22, Klartag '23,...]
- How does the h-vector of P compare with the h-vector of a generic hyperplane section of P? [Khovanskii '06]
- Densest hemisphere problem: Given points on the sphere, how can we find the hemisphere with the most points?

[Johnson-Preparata '78,...]

Volumes of slices of the permutahedron fixed by action of a permutation
 [Ardila-Schindler-(Vindas-Meléndez) '21,...]

HOW CAN WE COMPUTE THESE "EXTREMAL" SLICES?

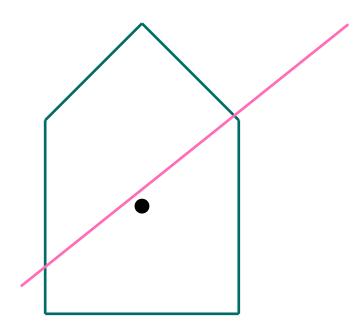
2 APPROACHES

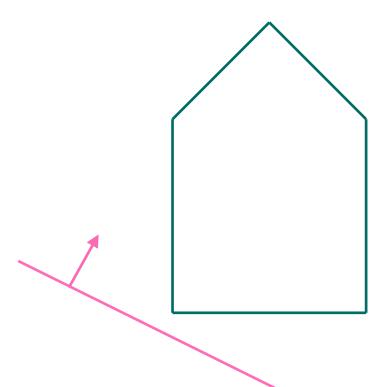
ROTATIONAL APPROACH

- 1. Choose a position of the origin
- 2. Consider all hyperplanes through the origin

TRANSLATIONAL APPROACH

- 1. Choose a normal direction
- 2. Consider all affine translates of the orthogonal hyperplane





2 APPROACHES

KEY OBSERVATIONS:

- H generic hyperplane \Longrightarrow vertices of $P \cap H$ = intersections of H with edges of P
- H, H' intersect the same set of edges of P
 - $\Longrightarrow P \cap H, P \cap H'$ have the same combinatorial type

MAIN IDEA FOR BOTH APPROACHES:

Collect all hyperplanes which intersect *P* in the same set of edges

---- regions of hyperplane arrangements

	Hyperplane Arrangement	Notation	Reference Object
Q	central arrangement	$\mathcal{C}_{\circlearrowleft}$	intersection body
	cocircuit arrangement	$\mathcal{R}_{\circlearrowleft}$	oriented matroid
1	parallel arrangement	$\mathcal{C}^{\mathbf{u}}_{\scriptscriptstyle au}$	fiber polytope
/	sweep arrangement	$\mathcal{R}_{\scriptscriptstyle{ au}}$	sweep polytope

Fix the position of the origin.

 u^{\perp} = central hyperplane orthogonal to u

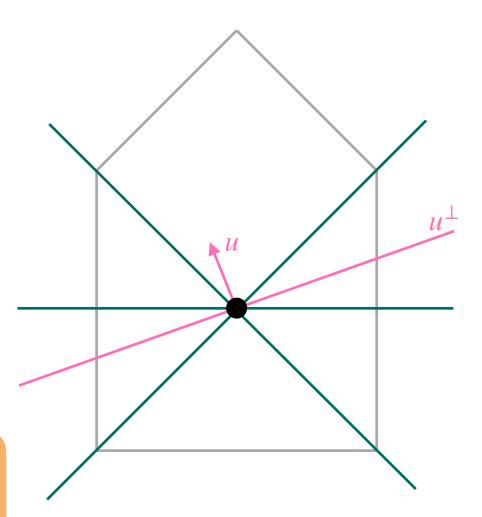
Consider the central hyperplane arrangement

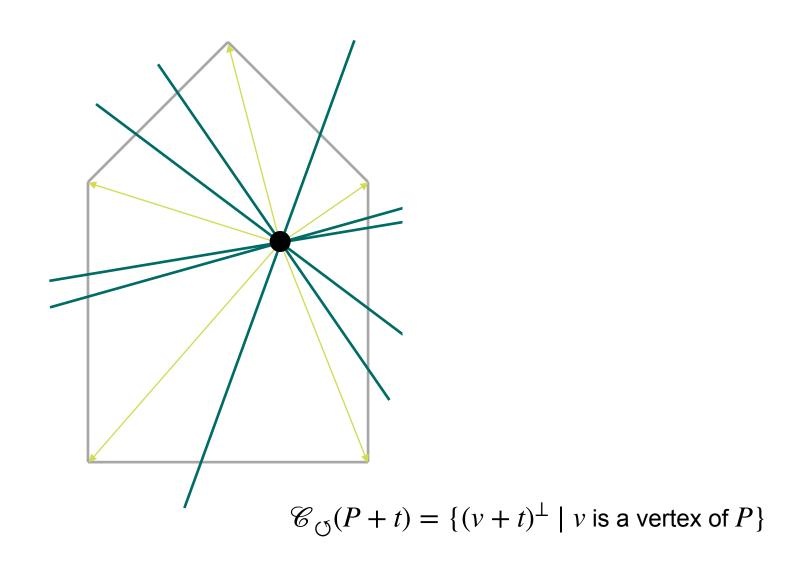
$$\mathscr{C}_{\circlearrowleft}(P) = \{ v^{\perp} \mid v \text{ is a vertex of } P \}.$$

— The combinatorial type of $P \cap u^{\perp}$ is constant in each cell of $\mathscr{C}_{\circlearrowleft}(P)$.

We refer to the maximal cells of $\mathscr{C}_{\circlearrowleft}(P)$ as chambers.

What happens if we translate P, i.e. vary the position of the origin?





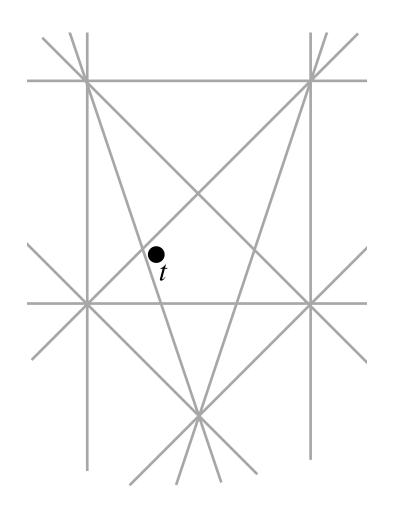
Translation $P+t\longleftrightarrow$ rotation of hyperplanes $(v+t)^{\perp}$ in central arrangement $\mathscr{C}_{\circlearrowleft}(P+t)$

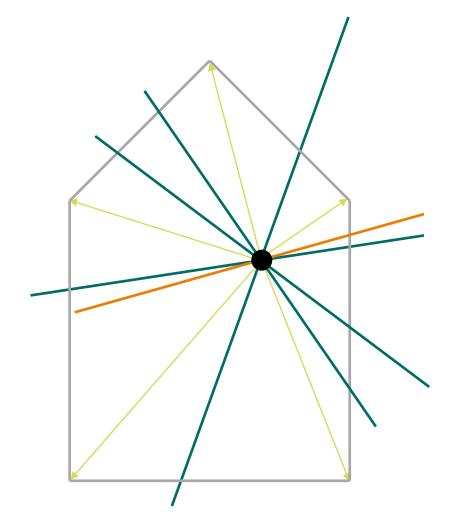
For which $t \in \mathbb{R}^d$ does $\mathscr{C}_{\circlearrowleft}(P+t)$ have the same combinatorics? (i.e. the same oriented matroid)

Consider the affine hyperplane arrangement (called cocircuit arrangement)

$$\mathcal{R}_{\circlearrowleft}(P) = \{ \mathsf{aff}(-v_1, ..., -v_d) \mid v_k \text{ are vertices of } P \}$$

 \longrightarrow within each region of $\mathscr{R}_{\circlearrowleft}(P)$ the combinatorics of $\mathscr{C}_{\circlearrowleft}(P+t)$ are fixed





$$\mathcal{R}_{\circlearrowleft}(P) = \{ \operatorname{aff}(-v_1, ..., -v_d) \mid v_k \text{ are vertices of } P \}$$

$$\mathscr{C}_{\circlearrowleft}(P+t) = \{(v+t)^{\perp} \mid v \text{ is a vertex of } P\}$$

THEOREM (B.-MERONI-DE LOERA '23):

Let $P\subseteq\mathbb{R}^d$ be a polytope, and $f(x)=\sum_{\alpha}c_{\alpha}x^{\alpha}$ be a polynomial in variables x_1,\ldots,x_d . Fix a region $R\in\mathcal{R}_{\circlearrowleft}(P)$ of the cocircuit arrangement, a translation $t\in R$ and a chamber $C(t)\in\mathcal{C}_{\circlearrowleft}(P+t)$ of the central arrangement.

Restricted to $t \in R$ and $u \in C(t) \cap S^{d-1}$, the integral

$$\int_{(P+t)\cap u^{\perp}} f(x) \, \mathrm{d}x$$

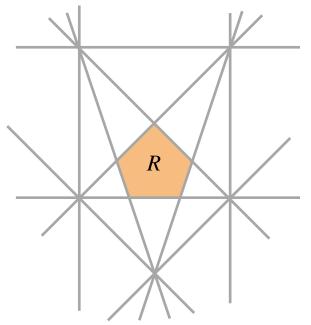
is a rational function in variables $t_1, ..., t_d, u_1, ..., u_d$. (and we have an algorithm to compute it)

NOTE:

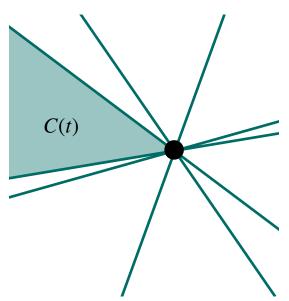
If
$$f(x) = 1$$
 then
$$\int_{(P+t)\cap u^{\perp}} f(x) \, dx = \text{vol}((P+t)\cap u^{\perp}).$$

PROOF IDEA

- 1. Fix region $R \in \mathcal{R}_{\circlearrowleft}(P)$, chamber $C(t) \in \mathcal{C}_{\circlearrowleft}(P+t)$ Let $Q(t,u) = (P+t) \cap u^{\perp}$ for $t \in R, u \in C(t)$
- 2. We can choose a fixed triangulation of Q(t, u) for all $t \in R, u \in C(t)$
- 3. Coordinates of vertices of Q(t, u) are rational functions in $u_1, ..., u_d, t_1, ..., t_d$
- 4. The volume of a simplex Δ in the triangulation is a determinant (in terms of vertices of Δ) $\Longrightarrow \text{vol}(\Delta)$ is a rational function in $u_1, \ldots, u_d, t_1, \ldots, t_d$
- 5. There is a formula for \int_{Δ} (linear form) in terms of vol(Δ) [Lasserre-Avrachenkov '01, Baldoni-Berline-DeLoera-Köppe-Vergne '11]
- 6. A Waring decomposition of f(x) is a decomposition into sums of powers of linear forms
- \Longrightarrow formula for computing $\int_{Q(u,t)} f(x)$ in terms of $u_1,...,u_d,t_1,...,t_d$



$$(t_1, t_2) \in R \iff$$
 $-t_1 - t_2 \ge 0, \quad t_1 - t_2 \ge 0$
 $-3t_1 + t_2 \ge -2, 3t_1 + t_2 \ge -2$
 $t_2 \ge -1$



If
$$(t_1, t_2) \in R$$
 then $(u_1, u_2) \in C(t) \iff$

$$2u_2 + t_1u_1 + t_2u_2 \ge 0$$

$$-u_1 - u_2 + t_1u_1 + t_2u_2 \ge 0$$

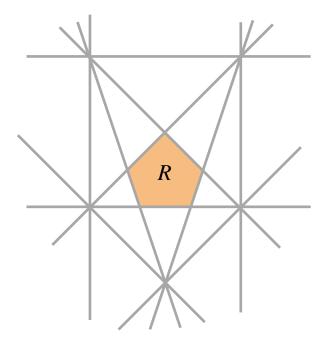
If
$$t \in R$$
 and $u \in C(t) \cap S^{d-1}$ then

$$vol((P+t) \cap u^{\perp}) = \int_{(P+t) \cap u^{\perp}} 1 dx = \frac{-(t_1 u_1 + t_2 u_2 + 3u_1 - u_2)}{u_1 (u_1 - u_2)}$$

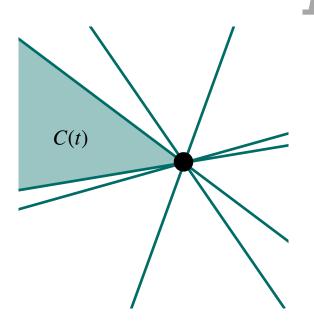
Let the computer find the biggest slice:

$$\frac{-(t_1u_1 + t_2u_2 + u_1 - u_2)}{u_1(u_1 - u_2)}$$
 s.t
$$(t_1, t_2) \in R$$

$$(u_1, u_2) \in C(t) \cap S^{d-1}$$



$$(t_1, t_2) \in R \iff$$
 $-t_1 - t_2 \ge 0, \quad t_1 - t_2 \ge 0$
 $-3t_1 + t_2 \ge -2, 3t_1 + t_2 \ge -2$
 $t_2 \ge -1$



If
$$(t_1, t_2) \in R$$
 then $(u_1, u_2) \in C(t) \iff$

$$2u_2 + t_1u_1 + t_2u_2 \ge 0$$

$$-u_1 - u_2 + t_1u_1 + t_2u_2 \ge 0$$

If $t \in R$ and $u \in C(t) \cap S^{d-1}$ then

$$vol((P+t) \cap u^{\perp}) = \int_{(P+t) \cap u^{\perp}} 1 dx = \frac{-(t_1 u_1 + t_2 u_2 + 3u_1 - u_2)}{u_1 (u_1 - u_2)}$$

Let the computer find the biggest slice:

maximize —	$\frac{(t_1u_1 + t_2u_2 + u_1 - u_2)}{u_1(u_1 - u_2)}$
s.t	$-t_1 - t_2 \ge 0,$ $t_1 - t_2 \ge 0$ $-3t_1 + t_2 \ge -2,$ $3t_1 + t_2 \ge -2$ $t_2 \ge -1$

$$2u_2 + t_1u_1 + t_2u_2 \ge 0$$

$$-u_1 - u_2 + t_1u_1 + t_2u_2 \ge 0$$

$$u_1^2 + u_2^2 + u_3^2 = 1$$

Compute this for all regions $R \in \mathcal{R}_{\circlearrowleft}(P)$ and chambers $C(t) \in \mathcal{C}_{\circlearrowleft}(P+t)$

→ largest slice!

Fix a normal direction $u \in S^{d-1}$

$$H(\beta) = \{x \in \mathbb{R}^d \mid \langle x, u \rangle = \beta\}$$

hyperplane parallel to u^{\perp}

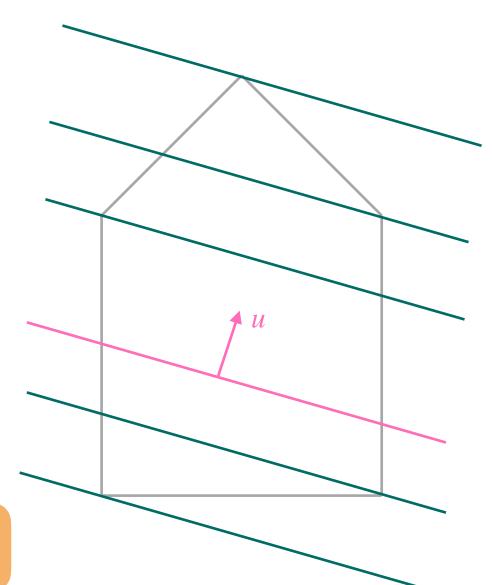
Consider the parallel hyperplane arrangement

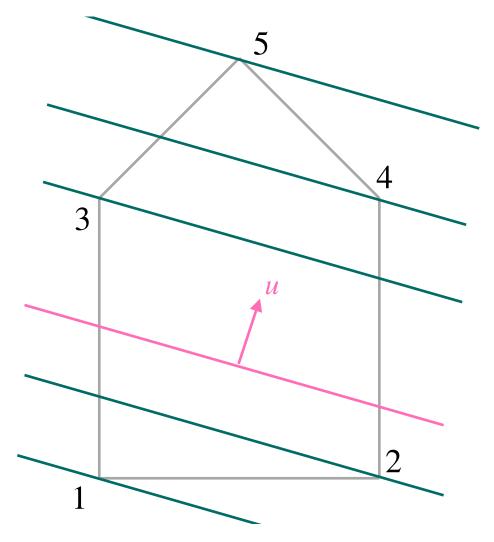
$$\mathscr{C}^{u}_{\uparrow}(P) = \{ H(\langle v, u \rangle \mid v \text{ is a vertex of } P \}.$$

— The combinatorial type of $P \cap H(\beta)$ is constant in each cell of $\mathscr{C}^u_{\uparrow}(P)$.

We refer to the maximal cells of \mathscr{C}^u_{\uparrow} as chambers.

What happens if we vary the direction $u \in S^{d-1}$?





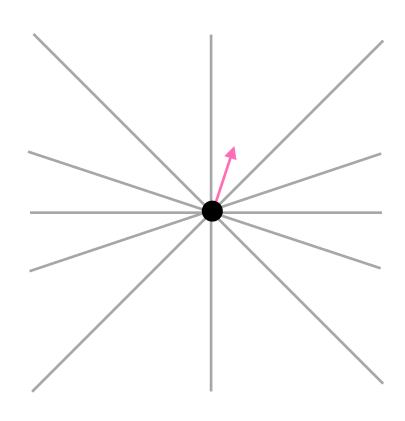
$$\mathscr{C}^{u}_{\uparrow}(P) = \{ H(\langle v, u \rangle \mid v \text{ is a vertex of } P \}$$

For which $u \in S^{d-1}$ does $\mathscr{C}^u_{\uparrow}(P)$ induce the same ordering of the vertices?

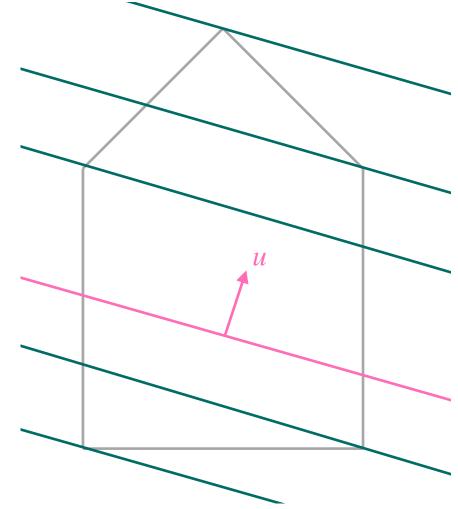
Consider the sweep arrangement

$$\mathscr{R}_{\uparrow}(P) = \{ (v_i - v_j)^{\perp} \mid v_i, v_j \text{ are vertices of } P \}$$

 \longrightarrow with each region of $\mathscr{R}_{\uparrow}(P)$ the induced ordering given by $\mathscr{C}^{\it{u}}_{\uparrow}(P)$ is fixed



$$\mathcal{R}_{\uparrow}(P) = \{(v_i - v_j)^{\perp} \mid v_i, v_j \text{ are vertices of } P\}$$



$$\mathscr{C}^u_{\uparrow}(P) = \{ H(\langle v, u \rangle \mid v \text{ is a vertex of } P \}$$

THEOREM (B.-MERONI-DE LOERA '23):

Let $P\subseteq\mathbb{R}^d$ be a polytope and $f(x)=\sum_{\alpha}c_{\alpha}x^{\alpha}$ be a polynomial in variables x_1,\ldots,x_d . Fix a region $R\in\mathcal{R}_{\uparrow}(P)$ of the sweep arrangement, a unit direction $u\in R\cap S^{d-1}$ and a chamber $C(u)\in\mathcal{C}_{\uparrow}^u(P)$ of the parallel arrangement.

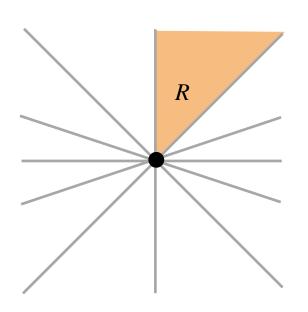
Restricted to $u \in R \cap S^{d-1}$ and $H(\beta) \in C(u)$, the integral

$$\int_{P \cap H(\beta)} f(x) \, \, \mathrm{d}x$$

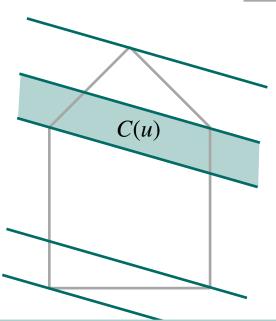
is a rational function in variables $u_1, ..., u_d, \beta$.

Let the computer find the biggest slice:

TRANSLATIONAL APPROACH

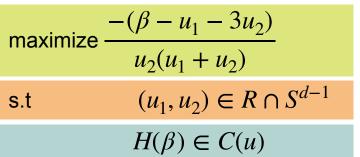


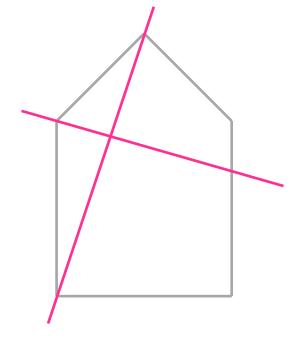
$$(u_1, u_2) \in R \iff u_1 \ge 0$$
$$u_1 - u_2 \le 0$$



If
$$(u_1, u_2) \in R \cap S^{d-1}$$
 then $\beta \in C(u) \iff u_1 - u_2 \le \beta \le -u_1 + u_2$

If
$$u \in R \cap S^{d-1}$$
 and $H(\beta) \in C(u)$ then
$$\operatorname{vol}((P+t) \cap u^{\perp}) = \frac{-(\beta - u_1 - 3u_2)}{u_2(u_1 + u_2)}$$





ROTATION VS TRANSLATION COMPARISON OF THE APPROACHES

COMPARISON

Running time of the algorithm \longleftrightarrow number of chambers in the arrangements n = # vertices of P

ROTATIONAL APPROACH

ARRANGEMENT #CHAMBERS (INCL. LOWER-DIM. CELLS)

$$\mathscr{C}_{0}(P)$$
 $O(n^d 2^d)$

$$\mathscr{R}_{0}(P)$$
 $O(n^{d^2}2^d)$

$$\mathcal{R}_{\circlearrowleft}(P)$$
 $O(n^{d^2}2^d)$ Total $O(n^{d^2+d}2^d)$

TRANSLATIONAL APPROACH

ARRANGEMENT #CHAMBERS (INCL. LOWER-DIM.)

$$\mathscr{C}_{\uparrow}(P)$$
 $O(n)$

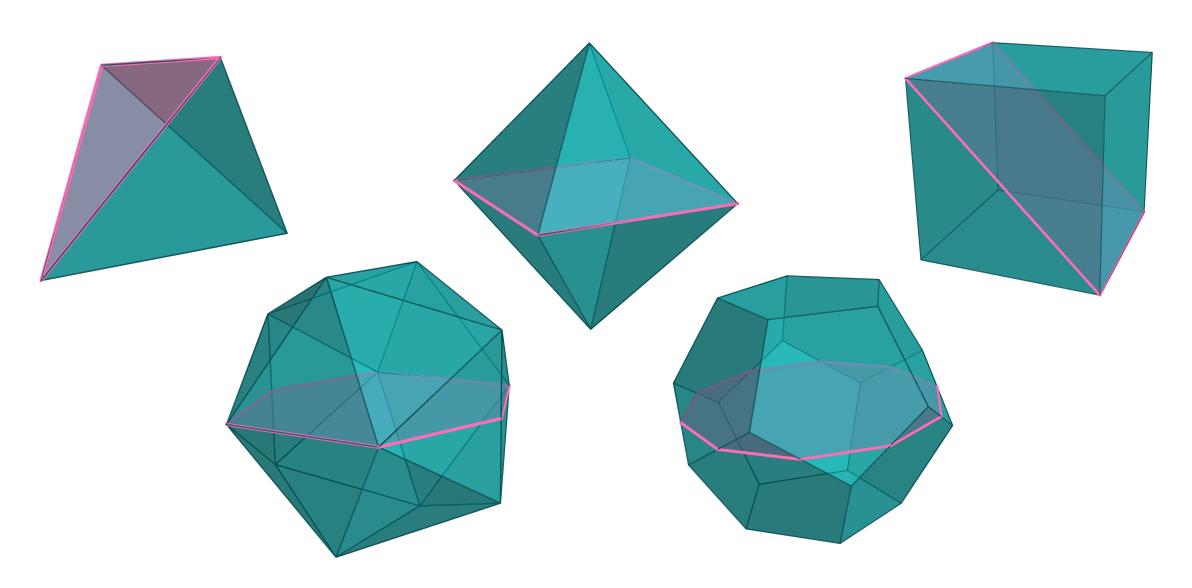
$$\mathcal{R}_{\uparrow}(P)$$
 $O(n^{2d}2^d)$ Total $O(n^{2d+1}2^d)$

Total

If $d \in \mathbb{N}$ is fixed then all of these are polynomials in n

- → both approaches yield algorithms in polynomial running time
- → Translational approach runs much faster

MAXIMUM VOLUME SLICES OF PLATONIC SOLIDS



VARIATIONS

WHAT ELSE?

WITH THE SAME METHODS WE CAN UNDERSTAND...

- Intersections with half-spaces
- Projections onto hyperplanes
- Combinatorial types

WE CAN OPTIMIZE FOR...

- volume
- Integral of a polynomial
- (Weighted) Number of k-dimensional faces

THEOREM (B.-DE LOERA-MERONI)

- We can compute all of these in polynomial time in fixed dimension
- [• It is #P-hard to compute the volume of $P \cap H$ with largest volume
- \uparrow It is NP-hard to compute $P \cap H$ that maximizes the sum of weights of edges it intersects
 - It is NP-hard to find the central halfspace H_0^+ that contains the most vertices of P, if P is inscribed

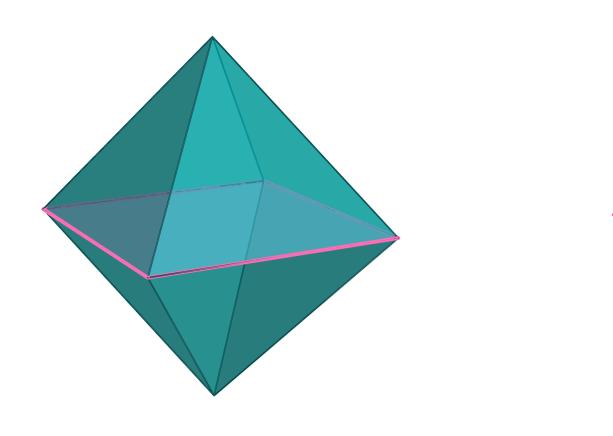
CONJECTURE

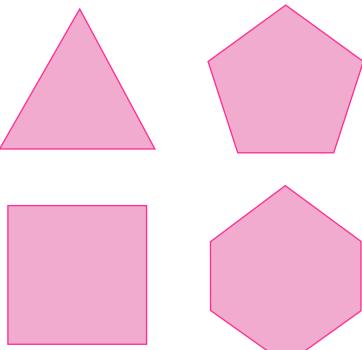
- It is NP-hard to find H which maximizes $f_k(P \cap H)$
- It is #P-hard to find H which maximizes $\operatorname{vol}(\pi_H(P))$
- It is NP-hard to find a central halfspace H_0^+ which maximizes $\operatorname{vol}(P \cap H_0^+)$

COMBINATORIAL TYPES OF SECTIONS OF THE CROSS-POLYTOPE

$$P = \operatorname{conv}(\pm e_i \mid i \in [d])$$

$$d = 3$$





COMBINATORIAL TYPES OF SECTIONS OF THE CROSS-POLYTOPE

$$P = \operatorname{conv}(\pm e_i \mid i \in [d])$$

H

 $x_1 + x_2 + x_3 = 0$

$$d = 4$$

 $2x_1 + 2x_2 + 2x_3 = 1$

$P\cap H$						
f-vector	(4,6,4)	(6, 12, 8)	(8, 18, 12)	(8, 17, 11)	(9, 19, 12)	
H	$x_1 + x_2 + x_3 + x_4 = 1$	$2x_1 = 1$	$x_1 + x_2 + x_3 = 0$	$2x_1 + 2x_2 + x_3 + x_4 = 1$	$2x_1 + 2x_2 + x_3$	
$P\cap H$						
f-vector	(8, 18, 12)	(10, 21, 13)	(12, 24, 14)	(12, 24, 14)		

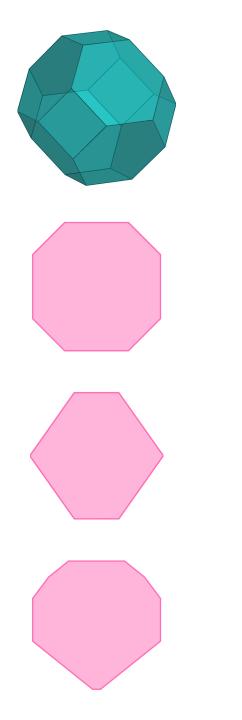
 $2x_1 + 2x_2 + 2x_3 + x_4 = 1 \mid x_1 + x_2 + x_3 + x_4 = 0$

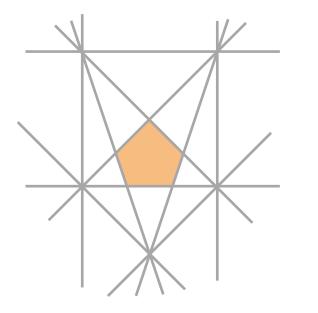
COMBINATORIAL TYPES OF SECTIONS OF THE CROSS-POLYTOPE

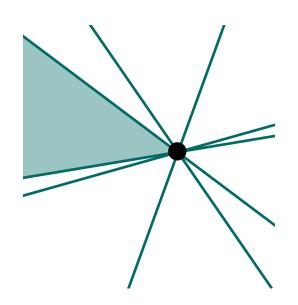
$$P = \operatorname{conv}(\pm e_i \mid i \in [d])$$

$$d = 5$$

$P\cap H$								
f-vector	(5, 10, 10, 5)	(8, 24, 32, 16)	(10, 34, 48, 24)	(11, 36, 48, 23)	(12, 39, 51, 24)	(13, 41, 52, 24)	(14, 42, 52, 24)	(14, 48, 62, 28)
H	$\begin{vmatrix} x_1 + x_2 + x_3 \\ +x_4 + x_5 = 1 \end{vmatrix}$	$2x_1 = 1$	$ \begin{aligned} x_1 + x_2 \\ +x_3 &= 0 \end{aligned} $	$\begin{vmatrix} 2x_1 + 2x_2 + x_3 \\ +x_4 + x_5 = 1 \end{vmatrix}$	$ 2x_1 + 2x_2 \\ +x_3 + x_4 = 1 $	$2x_1 + 2x_2 + x_3 = 1$	$2x_1 + 2x_2 = 1$	$\begin{vmatrix} x_1 + x_2 \\ +x_3 + x_4 = 0 \end{vmatrix}$
$P\cap H$								
f-vector	(14, 46, 59, 27)	(16, 51, 63, 28)	(17, 54, 66, 29)	$(18, 54, 64, 28) \qquad (20, 60, 70, 30)$		(20, 60, 70, 30)		
Н	$ 2x_1 + 2x_2 + 2x_3 +x_4 + x_5 = 1 $	$ 2x_1 + 2x_2 \\ +2x_3 + x_4 = 1 $	$ 2x_1 + 2x_2 + 2x_3 +2x_4 + x_5 = 1 $	$2x_1 + 2x_2 +2x_3 = 1$ $2x_1 + 2x_2 + 2x_3 + 2x_4 = 1$		$x_1 + x_2 + x_3$	$+x_4+x_5=0$	







THANK YOU!

