Multivariate Volume, Ehrhart and *h**-Polynomials of Polytropes

Marie Brandenburg and Sophia Elia joint work with Leon Zhang (UC Berkeley) 23 July 2020

TROPICAL GEOMETRY

Tropical Semiring is $\mathbb{T}=(\mathbb{R}\cup\{\infty\},\oplus,\odot)$ with addition and multiplication

 $a \oplus b = \min(a, b)$ $a \odot b = a + b$

TROPICAL GEOMETRY

Tropical Semiring is $\mathbb{T}=(\mathbb{R}\cup\{\infty\},\oplus,\odot)$ with addition and multiplication

 $a \oplus b = \min(a, b)$ $a \odot b = a + b$

On $\mathbb{T}^n = ((\mathbb{R} \cup \{\infty\})^n, \oplus, \odot)$ addition and multiplication is defined componentwise:

$$\mathbf{V} \oplus \mathbf{W} = \begin{pmatrix} \min(\mathsf{v}_1, \mathsf{w}_1) \\ \vdots \\ \min(\mathsf{v}_n, \mathsf{w}_m) \end{pmatrix} \ \lambda \odot \mathbf{V} = \begin{pmatrix} \lambda + \mathsf{v}_1 \\ \vdots \\ \lambda + \mathsf{v}_n \end{pmatrix}$$

TROPICAL GEOMETRY

Tropical Semiring is $\mathbb{T}=(\mathbb{R}\cup\{\infty\},\oplus,\odot)$ with addition and multiplication

 $a \oplus b = \min(a, b)$ $a \odot b = a + b$

On $\mathbb{T}^n = ((\mathbb{R} \cup \{\infty\})^n, \oplus, \odot)$ addition and multiplication is defined componentwise:

$$\mathbf{V} \oplus \mathbf{W} = \begin{pmatrix} \min(v_1, w_1) \\ \vdots \\ \min(v_n, w_m) \end{pmatrix} \ \lambda \odot \mathbf{V} = \begin{pmatrix} \lambda + v_1 \\ \vdots \\ \lambda + v_n \end{pmatrix}$$

Example:
$$1 \odot \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \oplus \begin{pmatrix} 5 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} \min(1+0,5) \\ \min(1+1,2) \\ \min(1+2,0) \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$

Definition

Let
$$V = \{v_1, \dots, v_r\} \subseteq \mathbb{R}^n$$
. The tropical convex hull of V is
 $\operatorname{tconv}(V) = \{a_1 \odot \mathbf{v}_1 \oplus \dots \oplus a_r \odot \mathbf{v}_r \mid a_1, \dots, a_r \in \mathbb{R}\}$

$$x \in \operatorname{tconv}(V) \implies \lambda \odot x = x + \lambda(1, \dots, 1)^T \in \operatorname{tconv}(V).$$

Identify $\operatorname{tconv}(V)$ with its image in the tropical projective torus
 $\mathbb{TP}^{n-1} = \mathbb{R}^n / \mathbb{R} \odot (1, \dots, 1)^T.$

Definition

Let
$$V = \{v_1, \dots, v_r\} \subseteq \mathbb{R}^n$$
. The tropical convex hull of V is
 $\operatorname{tconv}(V) = \{a_1 \odot \mathbf{v}_1 \oplus \dots \oplus a_r \odot \mathbf{v}_r \mid a_1, \dots, a_r \in \mathbb{R}\}$

 $x \in \operatorname{tconv}(V) \implies \lambda \odot x = x + \lambda(1, \dots, 1)^T \in \operatorname{tconv}(V).$ Identify $\operatorname{tconv}(V)$ with its image in the tropical projective torus $\mathbb{TP}^{n-1} = \mathbb{R}^n / \mathbb{R} \odot (1, \dots, 1)^T.$

Example:
$$\operatorname{tconv}\begin{pmatrix} 0 & 2\\ 0 & 1\\ 0 & 0 \end{pmatrix} = \left\{ \begin{pmatrix} \min(a_1, a_2+2)\\ \min(a_1, a_2+1)\\ \min(a_1, a_2) \end{pmatrix} \mid a_1, a_2 \in \mathbb{R}, \right\}$$

Definition

Let
$$V = \{v_1, \dots, v_r\} \subseteq \mathbb{R}^n$$
. The tropical convex hull of V is
 $\operatorname{tconv}(V) = \{a_1 \odot \mathbf{v}_1 \oplus \dots \oplus a_r \odot \mathbf{v}_r \mid a_1, \dots, a_r \in \mathbb{R}\}$

 $x \in \operatorname{tconv}(V) \implies \lambda \odot x = x + \lambda(1, \dots, 1)^T \in \operatorname{tconv}(V).$ Identify $\operatorname{tconv}(V)$ with its image in the tropical projective torus $\mathbb{TP}^{n-1} = \mathbb{R}^n / \mathbb{R} \odot (1, \dots, 1)^T.$

Example:
$$\operatorname{tconv}\begin{pmatrix} 0 & 2\\ 0 & 1\\ 0 & 0 \end{pmatrix} = \left\{ \begin{pmatrix} \min(a_1, a_2+2)\\ \min(a_1, a_2+1)\\ 0 \end{pmatrix} \mid a_1, a_2 \in \mathbb{R}, \min(a_1, a_2) = 0 \right\}$$

Definition

Let
$$V = \{v_1, \dots, v_r\} \subseteq \mathbb{R}^n$$
. The tropical convex hull of V is
 $\operatorname{tconv}(V) = \{a_1 \odot \mathbf{v}_1 \oplus \dots \oplus a_r \odot \mathbf{v}_r \mid a_1, \dots, a_r \in \mathbb{R}\}$

 $x \in \operatorname{tconv}(V) \implies \lambda \odot x = x + \lambda(1, \dots, 1)^T \in \operatorname{tconv}(V).$ Identify $\operatorname{tconv}(V)$ with its image in the tropical projective torus $\mathbb{TP}^{n-1} = \mathbb{R}^n / \mathbb{R} \odot (1, \dots, 1)^T.$

Example:
$$\operatorname{tconv}\begin{pmatrix} 0 & 2\\ 0 & 1\\ 0 & 0 \end{pmatrix} = \left\{ \begin{pmatrix} \min(a_1, a_2+2)\\ \min(a_1, a_2+1)\\ 0 \end{pmatrix} \mid a_1, a_2 \in \mathbb{R}, \min(a_1, a_2) = 0 \right\}$$

Definition

Polytropes are tropical polytropes that are clasically convex.

Definition

Polytropes are tropical polytropes that are clasically convex.

Question

Given the tropical vertices of a tropical polytope *P*, how can we tell if *P* is a polytrope?

└→ Kleene stars!

$$c = \begin{pmatrix} 0 & 3 & 2 \\ 3 & 0 & 4 \\ 5 & 1 & 0 \end{pmatrix}$$

 $(n \times n)$ -matrix with 0's along the diagonal

weighted complete digraph K_n

$$c^* = \begin{pmatrix} 0 & 3 & 2 \\ 3 & 0 & 4 \\ 4 & 1 & 0 \end{pmatrix}$$

weight of shortest path from vertex v_i to v_j in K_n

$$c = \begin{pmatrix} 0 & 3 & 2 \\ 3 & 0 & 4 \\ 5 & 1 & 0 \end{pmatrix}$$

 $(n \times n)$ -matrix with 0's along the diagonal

weighted complete digraph K_n

$$c^* = \begin{pmatrix} 0 & 3 & 2 \\ 3 & 0 & 4 \\ 4 & 1 & 0 \end{pmatrix}$$

weight of shortest path from vertex v_i to v_j in K_n

$$c = \begin{pmatrix} 0 & 3 & 2 \\ 3 & 0 & 4 \\ 5 & \mathbf{6} & 0 \end{pmatrix}$$

 $(n \times n)$ -matrix with 0's along the diagonal

weighted complete digraph K_n

$$c^* = \begin{pmatrix} 0 & 3 & 2 \\ 3 & 0 & 4 \\ 5 & 6 & 0 \end{pmatrix}$$

weight of shortest path from vertex v_i to v_j in K_n

$$C = \begin{pmatrix} 0 & 3 & 2 \\ 3 & 0 & 4 \\ 5 & 6 & 0 \end{pmatrix}$$

 $(n \times n)$ -matrix with 0's along the diagonal

weighted complete digraph K_n

$$c^* = \begin{pmatrix} 0 & 3 & 2 \\ 3 & 0 & 4 \\ 5 & 6 & 0 \end{pmatrix}$$

weight of shortest path from vertex v_i to v_j in K_n

Definition

A matrix $\mathbf{c} \in \mathbb{R}^{n \times n}$ is a Kleene star if $\mathbf{c} = \mathbf{c}^*$. The polytrope region is the set $\mathcal{P}ol_n = {\mathbf{c} \in \mathbb{R}^{n \times n} \mid \mathbf{c} \text{ is a Kleene star}}.$

Proposition (de la Puente '13)

Let $P \subseteq \mathbb{TP}^{n-1}$ be a non-empty set. The following are equivalent:

(1) *P* is a polytrope.

(2) There is a Kleene star $\mathbf{c} \in \mathcal{P}ol_n$ such that $P = \operatorname{tconv}(\mathbf{c})$.

(3) There is a Kleene star
$$\mathbf{c} \in \mathcal{P}ol_n$$
 such that $P = \{y \in \mathbb{R}^n \mid y_i - y_i \leq c_{ij}, y_n = 0\}.$

Furthermore, the **c**'s in the last two statements are equal, and are uniquely determined by *P*.

MAXIMAL POLYTROPES

Definition

A polytrope is called maximal if it has $\binom{2n-2}{n-1}$ vertices as an ordinary polytope.

MAXIMAL POLYTROPES

Definition

A polytrope is called maximal if it has $\binom{2n-2}{n-1}$ vertices as an ordinary polytope.

dimension	2	3	4	5	
# comb. types of max. polytropes	1	6	27248	?	
Kulas Loguig '00 liménez De la Duente '12 Tran '17 Loguig Cebréter '10					

Kulas-Joswig '08, Jimenez-De la Puente '12, Tran '17, Joswig-Schroter '19

MAXIMAL POLYTROPES

Definition

A polytrope is called maximal if it has $\binom{2n-2}{n-1}$ vertices as an ordinary polytope.

dimension	2	3	4	5	
# comb. types of max. polytropes	1	6	27248	?	
Kulas Januis 100 Jiménes De la Duante 112 Tran 117 Januis Cohréter 110					

Kulas-Joswig '08, Jiménez-De la Puente '12, Tran '17, Joswig-Schröter '19

Question

Given two Kleene stars, how can we tell if they define polytropes of the same type?

KLEENE STARS AND GRÖBNER FANS

 $\mathcal{P}ol_n = \{ \mathbf{c} \in \mathbb{R}^{n \times n} \mid \mathbf{c} \text{ is a Kleene star} \}$ Gröbner fan \mathcal{GF}_n of the ideal $I = \langle x_{ij}x_{ji} - 1, x_{ij}x_{jk} - x_{ik} \rangle$ \rightarrow Subfan $\mathcal{GF}_n|_{\mathcal{P}ol_n}$

KLEENE STARS AND GRÖBNER FANS

 $\mathcal{P}ol_n = \{ \mathbf{c} \in \mathbb{R}^{n \times n} \mid \mathbf{c} \text{ is a Kleene star} \}$ Gröbner fan \mathcal{GF}_n of the ideal $I = \langle x_{ij}x_{ji} - 1, x_{ij}x_{jk} - x_{ik} \rangle$ \rightarrow Subfan $\mathcal{GF}_n|_{\mathcal{P}ol_n}$

Theorem (Tran, '17)

Cones of $\mathcal{GF}_n|_{\mathcal{P}ol_n} \stackrel{bij.}{\longleftrightarrow}$ types of polytropes in \mathbb{TP}^{n-1} Open max cones of $\mathcal{GF}_n|_{\mathcal{P}ol_n} \stackrel{bij.}{\longleftrightarrow}$ types of max polytropes in \mathbb{TP}^{n-1}

KLEENE STARS AND GRÖBNER FANS

 $\mathcal{P}ol_n = \{ \mathbf{c} \in \mathbb{R}^{n \times n} \mid \mathbf{c} \text{ is a Kleene star} \}$ Gröbner fan \mathcal{GF}_n of the ideal $I = \langle x_{ij}x_{ji} - 1, x_{ij}x_{jk} - x_{ik} \rangle$ $\rightarrow \text{Subfan } \mathcal{GF}_n|_{\mathcal{P}ol_n}$

Theorem (Tran, '17)

Cones of $\mathcal{GF}_n|_{\mathcal{P}ol_n} \stackrel{bij.}{\longleftrightarrow}$ types of polytropes in \mathbb{TP}^{n-1} Open max cones of $\mathcal{GF}_n|_{\mathcal{P}ol_n} \stackrel{bij.}{\longleftrightarrow}$ types of max polytropes in \mathbb{TP}^{n-1}

VOLUME POLYNOMIALS

Goal

We want to compute a polynomial $p: \text{ open max cone of } \mathcal{GF}_n|_{\mathcal{Pol}_n} \rightarrow \mathbb{R}$ Kleene star $\mathbf{c} \mapsto \operatorname{Vol}(P_{\mathbf{c}})$

VOLUME POLYNOMIALS

Goal

We want to compute a polynomial

$$p: \text{ open max cone of } \mathcal{GF}_n|_{\mathcal{P}ol_n} \rightarrow \mathbb{R}$$

Kleene star $\mathbf{c} \mapsto \operatorname{Vol}(P_{\mathbf{c}})$

Theorem

Let X be the smooth toric variety defined by the normal fan Σ of a maximal polytrope P_c and D_{ij} the divisors corresponding to the rays of Σ . Then $[D_{ij}] \in H^2(X, \mathbb{Q})$ and

$$p(a_{12}, a_{13}, \dots, a_{n(n-1)}) = \int_{X} \left[\sum a_{ij} D_{ij}\right]^{\dim P}$$

is a polynomial such that $p(\mathbf{c}) = Vol(P_{\mathbf{c}})$.

There is an algorithm (de Loera-Sturmfels '03) that only depends on the choice of the cone.

VOLUME POLYNOMIALS

$$Vol(\mathbf{a}) = -a_{12}^2 - a_{13}^2 - a_{21}^2 - a_{23}^2 - a_{31}^2 - a_{32}^2 + 2a_{12}a_{13} + 2a_{13}a_{23} + 2a_{21}a_{23} + 2a_{21}a_{31} + 2a_{12}a_{32} + 2a_{31}a_{32}$$

 $Vol(\mathbf{c}) = 6$

Discrete volume \rightarrow lattice point count $ehr_P(t) = |tP \cap \mathbb{Z}^n|$ Discrete volume \rightarrow lattice point count $ehr_P(t) = |tP \cap \mathbb{Z}^n|$ $= |\{x \in \mathbb{Z}^n \mid Ax \le ta\}|, A \in \mathbb{R}^{m \times n}, a \in \mathbb{R}^m$ Discrete volume \rightarrow lattice point count $ehr_P(t) = |tP \cap \mathbb{Z}^n|$ $= |\{x \in \mathbb{Z}^n \mid Ax \le ta\}|, A \in \mathbb{R}^{m \times n}, a \in \mathbb{R}^m$ $= \underline{c_d}t^{\dim P} + c_{\dim P-1}t^{d-1} \cdots + c_0$ $\rightarrow c_{\dim P} = \text{volume}(P)$ Discrete volume \rightarrow lattice point count $ehr_P(t) = |tP \cap \mathbb{Z}^n|$ $= |\{x \in \mathbb{Z}^n \mid Ax \le ta\}|, A \in \mathbb{R}^{m \times n}, a \in \mathbb{R}^m$ $= \underline{c_d} t^{\dim P} + c_{\dim P-1} t^{d-1} \cdots + c_0$ $\rightarrow c_{\dim P} = \text{volume}(P)$

Mulitvariate version- keep $a \in \mathbb{R}^m$ variable

 $ehr_P(a_1,\ldots,a_m,t) \rightarrow independently move facets.$

Discrete volume \rightarrow lattice point count $ehr_P(t) = |tP \cap \mathbb{Z}^n|$ $= |\{x \in \mathbb{Z}^n \mid Ax \le ta\}|, A \in \mathbb{R}^{m \times n}, a \in \mathbb{R}^m$ $= \underline{c_d}t^{\dim P} + c_{\dim P-1}t^{d-1}\cdots + c_0$ $\rightarrow c_{\dim P} = \text{volume}(P)$

Mulitvariate version- keep $a \in \mathbb{R}^m$ variable

 $ehr_P(a_1,\ldots,a_m,t) \rightarrow independently move facets.$

Goal

Transform multivariate volume polynomials to multivariate Ehrhart polynomials.

Discrete volume \rightarrow lattice point count $ehr_P(t) = |tP \cap \mathbb{Z}^n|$ $= |\{x \in \mathbb{Z}^n \mid Ax \le ta\}|, A \in \mathbb{R}^{m \times n}, a \in \mathbb{R}^m$ $= \underline{c_d}t^{\dim P} + c_{\dim P-1}t^{d-1}\cdots + c_0$ $\rightarrow c_{\dim P} = \text{volume}(P)$

Mulitvariate version- keep $a \in \mathbb{R}^m$ variable

 $ehr_P(a_1,\ldots,a_m,t) \rightarrow independently move facets.$

Goal

Transform multivariate volume polynomials to multivariate Ehrhart polynomials.

• Use a differential operator - the Todd Operator

The Todd operator is the differential operator

$$\operatorname{Todd}_{h} = 1 + \sum_{k \geq 1} (-1)^{k} \frac{B_{k}}{k!} \left(\frac{d}{dh}\right)^{k}.$$

The Todd operator is the differential operator

$$\operatorname{\mathsf{Todd}}_h = 1 + \sum_{k \ge 1} (-1)^k \frac{B_k}{k!} \left(\frac{d}{dh}\right)^k.$$

Bernoulli numbers: B_k , $k \in \mathbb{Z}_{\geq 0}$:

$$\frac{z}{e^z - 1} = \sum_{k \ge 0} \frac{B_k}{k!} z^k$$

The Todd operator is the differential operator

$$\operatorname{\mathsf{Todd}}_h = 1 + \sum_{k \ge 1} (-1)^k \frac{B_k}{k!} \left(\frac{d}{dh}\right)^k.$$

Bernoulli numbers: B_k , $k \in \mathbb{Z}_{\geq 0}$:

$$\frac{z}{e^z - 1} = \sum_{k \ge 0} \frac{B_k}{k!} z^k$$

Theorem (Khovanskii-Pukhlikov, 1992) Let $P \subseteq \mathbb{R}^n$ be a unimodular, lattice *d*-polytope. Then:

$$\#(P \cap \mathbb{Z}^n) = \operatorname{Todd}_{\mathsf{h}} \operatorname{vol}(P_{\mathsf{h}})|_{\mathsf{h}=0}$$

```
Theorem (Khovanskiĭ-Pukhlikov, 1992)
```

Let $P \subseteq \mathbb{R}^n$ be a unimodular, lattice *d*-polytope. Then:

```
\#(P \cap \mathbb{Z}^n) = \mathsf{Todd}_h \operatorname{vol}(P_h)|_{h=0}.
```

unimodular: primitive vertex cone generators form \mathbb{Z}^d basis.

Theorem (Khovanskii-Pukhlikov, 1992) Let $P \subseteq \mathbb{R}^n$ be a unimodular, lattice *d*-polytope. Then: $\#(P \cap \mathbb{Z}^n) = \operatorname{Todd}_h \operatorname{vol}(P_h)|_{h=0}.$

unimodular: primitive vertex cone generators form \mathbb{Z}^d basis. For $\mathbf{h} \in \mathbb{R}^m$, the shifted polytope $P_{\mathbf{h}}$ is defined as

 $P_h = \{x \in \mathbb{R}^n : Ax \le b + h\}.$
FROM CONTINUOUS TO DISCRETE VOLUME

Theorem (Khovanskiĭ-Pukhlikov, 1992) Let $P \subseteq \mathbb{R}^n$ be a unimodular, lattice *d*-polytope. Then:

 $\#(P \cap \mathbb{Z}^n) = \operatorname{Todd}_h \operatorname{vol}(P_h)|_{h=0}.$

unimodular: primitive vertex cone generators form \mathbb{Z}^d basis. For $\mathbf{h} \in \mathbb{R}^m$, the shifted polytope $P_{\mathbf{h}}$ is defined as

$$P_{\mathsf{h}} = \{ \mathsf{x} \in \mathbb{R}^{n} : A\mathsf{x} \le \mathsf{b} + \mathsf{h} \}.$$

0,1,0
1,0,0

$$2,2,0$$

 $vol(\mathbf{a}) = -\frac{1}{2}a_{12}^2 - \frac{1}{2}a_{13}^2 - \frac{1}{2}a_{21}^2 - \frac{1}{2}a_{23}^2 - \frac{1}{2}a_{31}^2 - \frac{1}{2}a_{32}^2 + a_{32}^2 + a_{31}a_{32}^2 + a_$

 \rightarrow for small h, vol(P_h) = vol(a + h)

0,1,0
1,0,0

$$vol(\mathbf{a}) = -\frac{1}{2}a_{12}^2 - \frac{1}{2}a_{13}^2 - \frac{1}{2}a_{21}^2 - \frac{1}{2}a_{23}^2 - \frac{1}{2}a_{31}^2 - \frac{1}{2}a_{32}^2 + a_{32}^2 + a_{31}a_{32}^2 + a_{31}a_{32$$

$$\rightarrow$$
 for small h, vol(P_h) = vol(a + h)

$$\begin{aligned} \mathsf{Todd}_{\mathsf{h}} \mathsf{vol}(\mathsf{a} + \mathsf{h}) \\ &= \left[1 + \frac{1}{2}\frac{\partial}{\partial h_{12}} + \frac{1}{6}\left(\frac{\partial}{\partial h_{12}}\right)^2\right] \cdots \left[1 + \frac{1}{2}\frac{\partial}{\partial h_{32}} + \frac{1}{6}\left(\frac{\partial}{\partial h_{32}}\right)^2\right] \mathsf{vol}(\mathsf{a} + \mathsf{h})\big|_{\mathsf{h}=0} \\ &= \left[1 + \frac{1}{2}\frac{\partial}{\partial a_{12}} + \frac{1}{6}\left(\frac{\partial}{\partial a_{12}}\right)^2\right] \cdots \left[1 + \frac{1}{2}\frac{\partial}{\partial a_{32}} + \frac{1}{6}\left(\frac{\partial}{\partial a_{32}}\right)^2\right] \mathsf{vol}(\mathsf{a}) \\ &= \mathsf{vol}(\mathsf{a}) + \frac{1}{2}(a_{12} + a_{13} + a_{21} + a_{23} + a_{31} + a_{32}) + 1 \end{aligned}$$

$$ehr(\mathbf{a}) = -\frac{1}{2}a_{12}^2 - \frac{1}{2}a_{13}^2 - \frac{1}{2}a_{21}^2 - \frac{1}{2}a_{23}^2 - \frac{1}{2}a_{31}^2 - \frac{1}{2}a_{32}^2 + a_{12}a_{13} + a_{13}a_{23} + a_{21}a_{23} + a_{21}a_{31} + a_{12}a_{32} + a_{31}a_{32} + \frac{1}{2}(a_{12} + a_{13} + a_{21} + a_{23} + a_{31} + a_{32}) + 1$$

$$ehr(1, 2, 1, 2, 0, 0) = 7$$

 $ehr(t, 2t, t, 2t, 0, 0) = 3t^{2} + 3t + 1$

From Ehrhart to h^* polynomials

Ehrhart series of a *d*-dimensional lattice polytope *P*:

$$Ehr_{P}(t) = \sum_{k \ge 0} ehr_{P}(k)t^{k} = \frac{h^{*}(t)}{(1-t)^{d+1}}$$

From Ehrhart to h^* polynomials

Ehrhart series of a *d*-dimensional lattice polytope *P*:

$$Ehr_{P}(t) = \sum_{k\geq 0} ehr_{P}(k)t^{k} = \frac{h^{*}(t)}{(1-t)^{d+1}}$$

$$Ehr_P(t) = \sum_{k \ge 0} (c_d \cdot k^d + c_{d-1} \cdot k^{d-1} + \dots + c_0 \cdot k^0) t^k$$
$$= \sum_{j=0}^d c_j \sum_{k \ge 0} k^j t^k$$

From Ehrhart to h^* polynomials

Ehrhart series of a *d*-dimensional lattice polytope *P*:

$$Ehr_{P}(t) = \sum_{k \ge 0} ehr_{P}(k)t^{k} = \frac{h^{*}(t)}{(1-t)^{d+1}}$$

$$Ehr_P(t) = \sum_{k \ge 0} (c_d \cdot k^d + c_{d-1} \cdot k^{d-1} + \dots + c_0 \cdot k^0) t^k$$
$$= \sum_{j=0}^d c_j \sum_{k \ge 0} k^j t^k$$

 \longrightarrow recognize the Eulerian polynomials:

$$\sum_{k \ge 0} k^{j} t^{k} = \frac{A_{j}(t)}{(1-t)^{j+1}}$$

FROM EHRHART TO h^* POLYNOMIALS

Ehrhart series of a *d*-dimensional lattice polytope *P*:

$$Ehr_{P}(t) = \sum_{k \ge 0} ehr_{P}(k)t^{k} = \frac{h^{*}(t)}{(1-t)^{d+1}}$$

$$Ehr_P(t) = \sum_{k \ge 0} (c_d \cdot k^d + c_{d-1} \cdot k^{d-1} + \dots + c_0 \cdot k^0) t^k$$
$$= \sum_{j=0}^d c_j \sum_{k \ge 0} k^j t^k$$

 \longrightarrow recognize the Eulerian polynomials:

$$\sum_{k\geq 0} k^{j} t^{k} = \frac{A_{j}(t)}{(1-t)^{j+1}}$$
$$\Rightarrow \quad h_{P}^{*}(t) = \sum_{i=0}^{d} c_{j} A_{j}(t) (1-t)^{d-j}$$

FROM EHRHART TO h^* : **EXAMPLE**

$$h^*(t) = \sum_{j=0}^d c_j A_j(t) (1-t)^{d-j}$$

From Ehrhart to h^* : Example

$$h^{*}(t) = \sum_{j=0}^{d} c_{j}A_{j}(t)(1-t)^{d-j}$$

$$ehr(\mathbf{a},t) = \underbrace{-\frac{1}{2}(a_{12}^{2} + a_{13}^{2} + a_{21}^{2} + a_{23}^{2} + a_{31}^{2} + a_{32}^{2})t^{2}}_{+(a_{12}a_{13} + a_{13}a_{23} + a_{21}a_{23} + a_{21}a_{31} + a_{12}a_{32} + a_{31}a_{32})t^{2}}_{1,0,0} \underbrace{0, 1, 0}_{1,0,0}$$

$$+ \frac{1}{2}(a_{12} + a_{13} + a_{21} + a_{23} + a_{31} + a_{32})t + 1$$

 \rightarrow collect terms of like degree

FROM EHRHART TO h^* : **EXAMPLE**

$$h^{*}(t) = \sum_{j=0}^{d} c_{j}A_{j}(t)(1-t)^{d-j}$$

$$ehr(\mathbf{a},t) = \begin{array}{c} 2,2,0 \\ -\frac{1}{2}(a_{12}^{2}+a_{13}^{2}+a_{21}^{2}+a_{23}^{2}+a_{31}^{2}+a_{32}^{2})t^{2} \\ +(a_{12}a_{13}+a_{13}a_{23}+a_{21}a_{23}+a_{21}a_{31}+a_{12}a_{32}+a_{31}a_{32})t^{2} \\ +\frac{1}{2}(a_{12}+a_{13}+a_{21}+a_{23}+a_{31}+a_{32})t+1 \end{array}$$

- \rightarrow collect terms of like degree
- \rightarrow apply formula to find h^*

$$h^{*}(\mathbf{a},t) = \left(\sum_{i \neq j \in [3]} -\frac{1}{2} [a_{ij}^{2} + a_{ij}] + \sum_{i \neq j \neq k \in [3]} [a_{ij}a_{ik} + a_{ji}a_{ki}] + 1\right) t^{2} \\ + \left(\sum_{i \neq j \in [3]} \frac{1}{2} [a_{ij} - a_{ij}^{2}] + \sum_{i \neq j \neq k \in [3]} [a_{ij}a_{ik} + a_{ji}a_{ki}] - 2\right) t + 1$$

FROM EHRHART TO h^* : **EXAMPLE**

$$h^{*}(t) = \sum_{j=0}^{d} c_{j}A_{j}(t)(1-t)^{d-j}$$

$$ehr(\mathbf{a},t) = \begin{array}{c} 2,2,0 \\ -\frac{1}{2}(a_{12}^{2}+a_{13}^{2}+a_{21}^{2}+a_{23}^{2}+a_{31}^{2}+a_{32}^{2})t^{2} \\ +(a_{12}a_{13}+a_{13}a_{23}+a_{21}a_{23}+a_{21}a_{31}+a_{12}a_{32}+a_{31}a_{32})t^{2} \\ +\frac{1}{2}(a_{12}+a_{13}+a_{21}+a_{23}+a_{31}+a_{32})t+1 \end{array}$$

- \rightarrow collect terms of like degree
- \rightarrow apply formula to find h^*

$$h^{*}(\mathbf{a},t) = \left(\sum_{\substack{i \neq j \in [3] \\ i \neq j \in [3]}} -\frac{1}{2}[a_{ij}^{2} + a_{ij}] + \sum_{\substack{i \neq j \neq k \in [3] \\ i \neq j \neq k \in [3]}} [a_{ij}a_{ik} + a_{ji}a_{ki}] + 1\right)t^{2} + \left(\sum_{\substack{i \neq j \in [3] \\ i \neq j \in [3]}} \frac{1}{2}[a_{ij} - a_{ij}^{2}] + \sum_{\substack{i \neq j \neq k \in [3] \\ i \neq j \neq k \in [3]}} [a_{ij}a_{ik} + a_{ji}a_{ki}] - 2\right)t + 1$$

$$h^{*}(1, 2, 1, 2, 0, 0, t) = t^{2} + 4t + 1$$

16

POLY POLYNOMIALS

Result:

Multivariate volume, Ehrhart, and h^* polynomials for all polytropes up to dimension 4.

 \longrightarrow fast computation time.

POLY POLYNOMIALS

Result:

Multivariate volume, Ehrhart, and *h** polynomials for all polytropes up to dimension 4.

 \rightarrow fast computation time. Volume polynomial of a 3-polytrope: $2a_{12}^3 - 3a_{12}^2a_{13} + a_{12}^3 - 3a_{12}^2a_{14} + 6a_{12}a_{13}a_{14} - 3a_{12}^2a_{14} + a_{21}^3 - 3a_{12}^2a_{23}$ $+ 6a_{13}a_{14}a_{23} - 3a_{14}^2a_{23} - 3a_{14}a_{23}^2 - 3a_{21}a_{23}^2 + a_{23}^3 - 3a_{21}^2a_{24} + 6a_{14}a_{23}a_{24}$ $+ 6a_{21}a_{23}a_{24} - 3a_{14}a_{24}^2 - 3a_{23}a_{24}^2 + a_{24}^3 - 3a_{21}^2a_{31} + 6a_{21}a_{24}a_{31} - 3a_{24}^2a_{31}$ $-3a_{24}a_{31}^2 + a_{31}^3 - 3a_{12}^2a_{32} + 6a_{12}a_{14}a_{32} - 3a_{14}^2a_{32} - 3a_{31}^2a_{32} - 3a_{14}a_{32}^2$ $+ 6a_{14}a_{24}a_{34} + 6a_{24}a_{31}a_{34} + 6a_{14}a_{32}a_{34} + 6a_{31}a_{32}a_{34} - 3a_{14}a_{34}^2 - 3a_{24}a_{34}^2$ $-3a_{21}a_{24}^2 - 3a_{22}a_{24}^2 + 2a_{24}^3 + 6a_{21}a_{31}a_{41} - 3a_{21}^2a_{41} + 6a_{31}a_{32}a_{41} - 3a_{22}^2a_{41}$ $-3a_{21}a_{41}^2 - 3a_{32}a_{41}^2 + a_{41}^3 - 3a_{12}^2a_{42} + 6a_{12}a_{13}a_{42} - 3a_{13}^2a_{42} + 6a_{12}a_{32}a_{42}$ $+ 6a_{32}a_{41}a_{42} - 3a_{13}a_{42}^2 - 3a_{32}a_{42}^2 - 3a_{41}a_{42}^2 + a_{42}^3 - 3a_{21}^2a_{43}^2 + 6a_{13}a_{23}a_{43}$ $+ 6a_{21}a_{23}a_{43} - 3a_{23}^2a_{43} + 6a_{21}a_{41}a_{43} - 3a_{41}^2a_{43} + 6a_{13}a_{42}a_{43} + 6a_{41}a_{42}a_{43}$ $-3a_{13}a_{42}^2 - 3a_{21}a_{42}^2 - 3a_{42}a_{42}^2 + a_{42}^3$

dimension	2	3	4	5
# comb. types of max. polytropes	1	6	27248	?

Kulas-Joswig '08, Jiménez-De la Puente '12, Tran '17, Joswig-Schröter '19

dimension	2	3	4	5
# comb. types of max. polytropes	1	6	27248	?

Kulas-Joswig '08, Jiménez-De la Puente '12, Tran '17, Joswig-Schröter '19

Theorem: Joswig-Schröter '19

Maximal *n*-polytropes \Leftrightarrow regular central triangulations of the fundamental polytope FP_{n+1} .

fundamental polytope:

$$FP_n = \operatorname{conv} \{ \mathbf{e}_i - \mathbf{e}_j \mid i \neq j \in [n] \}.$$

UNDERSTANDING THE COEFFICIENTS: DIMENSION 3

A regular central triangulation of *FP*₄ is determined by a triangulation of each of the six square facets.

The coefficients of the six 3-dimensional volume polynomials correspond to the six triangulations of the fundamental polytope.

The coefficients of the six 3-dimensional volume polynomials correspond to the six triangulations of the fundamental polytope.

0	11	20	29
21	0	19	20
20	29	0	11
19	20	21	0/

The coefficients of the six 3-dimensional volume polynomials correspond to the six triangulations of the fundamental polytope.

The coefficients of the six 3-dimensional volume polynomials correspond to the six triangulations of the fundamental polytope.

(0	11	20	29
21	0	19	20
20	29	0	11
19	20	21	0)

 $\{e_1 - e_2, e_3 - e_2, e_1 - e_4, 0\}$ form a simplex $\Rightarrow \text{ coefficient of } a_{12}a_{32}a_{14} \text{ is } 6.$

 $e_1 - e_2$ neighbors $e_3 - e_2$ and $e_3 - e_2$ is adjacent to a

triangulating edge in the square \Rightarrow coefficient of $a_{12}^2 a_{32}$ is -3.

$$\begin{aligned} 2a_{12}^3 - 3a_{12}^2a_{13} + a_{13}^3 - 3a_{12}^2a_{14} + 6a_{12}a_{13}a_{14} - 3a_{13}^2a_{14} + a_{21}^3 - 3a_{13}^2a_{23} \\ + 6a_{13}a_{14}a_{23} - 3a_{14}^2a_{23} - 3a_{14}a_{23}^2 - 3a_{21}a_{23}^2 + a_{23}^3 - 3a_{21}^2a_{24} + 6a_{14}a_{23}a_{24} \\ + 6a_{21}a_{23}a_{24} - 3a_{14}a_{24}^2 - 3a_{23}a_{24}^2 + a_{24}^3 - 3a_{21}^2a_{31} + 6a_{21}a_{24}a_{31} - 3a_{24}^2a_{31} \\ - 3a_{24}a_{31}^2 + a_{31}^3 - 3a_{12}^2a_{32} + 6a_{12}a_{14}a_{32} - 3a_{14}^2a_{32} - 3a_{31}^2a_{32} - 3a_{14}a_{32}^2 \\ + 6a_{14}a_{24}a_{34} + 6a_{24}a_{31}a_{34} + 6a_{14}a_{32}a_{34} + 6a_{31}a_{32}a_{34} - 3a_{14}a_{32}^2 - 3a_{24}a_{34}^2 \\ - 3a_{31}a_{34}^2 - 3a_{32}a_{34}^2 + 2a_{34}^3 + 6a_{21}a_{31}a_{41} - 3a_{31}^2a_{41} + 6a_{31}a_{32}a_{41} - 3a_{32}^2a_{41} \\ - 3a_{21}a_{41}^2 - 3a_{32}a_{41}^2 + a_{41}^3 - 3a_{12}^2a_{42} + 6a_{12}a_{13}a_{42} - 3a_{13}^2a_{42} + 6a_{12}a_{32}a_{43} \\ + 6a_{21}a_{23}a_{43} - 3a_{22}a_{41}^2 + a_{41}^3 - 3a_{12}^2a_{42} + 6a_{12}a_{13}a_{42} - 3a_{21}^2a_{43}^2 + 6a_{13}a_{23}a_{43} \\ + 6a_{21}a_{23}a_{43} - 3a_{22}a_{41}^2 - 3a_{32}a_{42}^2 - 3a_{41}a_{42}^2 + a_{42}^3 - 3a_{21}^2a_{43} + 6a_{13}a_{23}a_{43} \\ - 3a_{13}a_{43}^2 - 3a_{21}a_{43}^2 - 3a_{42}a_{43}^2 + 6a_{21}a_{41}a_{43} - 3a_{41}^2a_{43}^2 + 6a_{13}a_{42}a_{43} + 6a_{41}a_{42}a_{43} \\ - 3a_{13}a_{43}^2 - 3a_{21}a_{43}^2 - 3a_{42}a_{43}^2 + a_{43}^3 \end{aligned}$$

 \rightarrow less straight forward than dim 3

 \rightarrow less straight forward than dim 3

 \rightarrow Embed the 27,248 normalized volume polynomials in the vector space of homogeneous polynomials of degree 4, having dimension $\binom{23}{4} = 8855$. The affine span has dimension 70.

 \rightarrow less straight forward than dim 3

 \rightarrow Embed the 27,248 normalized volume polynomials in the vector space of homogeneous polynomials of degree 4, having dimension $\binom{23}{4} = 8855$. The affine span has dimension 70.

Partition	Example monomial	Possible coefficients	Coefficient sum
4	a ₁₂	-6, -3, -2, -1, 0, 1, 2, 3	-20
3 + 1	$a_{12}^3 a_{13}$	-4,0,4,8	320
2 + 2	$a_{12}^2 a_{13}^2$	0,6	300
2+1+1	$a_{12}a_{13}a_{14}^2$	-12, 0, 12	-2160
1+1+1+1	a ₁₂ a ₁₃ a ₁₄ a ₁₅	0,24	1680

- Analyzed the coefficients of these polynomials

- Analyzed the coefficients of these polynomials

- Question: How do the coefficients of the volume polynomials of maximal (n - 1)-dimensional polytropes reflect the combinatorics of the corresponding regular central subdivision of FP_n ?

- Analyzed the coefficients of these polynomials

- Question: How do the coefficients of the volume polynomials of maximal (n - 1)-dimensional polytropes reflect the combinatorics of the corresponding regular central subdivision of FP_n ?

- Question: Why is the dimension of the affine span so low in dimension 4? What is the convex hull?

- Analyzed the coefficients of these polynomials

- Question: How do the coefficients of the volume polynomials of maximal (n - 1)-dimensional polytropes reflect the combinatorics of the corresponding regular central subdivision of FP_n ?

- Question: Why is the dimension of the affine span so low in dimension 4? What is the convex hull?

The Mahler Conjecture (1938)

For $K \subseteq \mathbb{R}^n$ compact, centrally symmetric, full-dimensional, convex:

$$\operatorname{vol}(K)\operatorname{vol}(K^\circ) \geq \frac{4^n}{n!}$$

The Mahler Conjecture (1938)

For $K \subseteq \mathbb{R}^n$ compact, centrally symmetric, full-dimensional, convex:

$$\operatorname{vol}(K)\operatorname{vol}(K^\circ) \geq \frac{4^n}{n!}$$

- Holds for three dimensional centrally symmetric polytropes, de la Puente and Clavería (2018)

The Mahler Conjecture (1938)

For $K \subseteq \mathbb{R}^n$ compact, centrally symmetric, full-dimensional, convex:

$$\operatorname{vol}(K)\operatorname{vol}(K^\circ) \geq \frac{4^n}{n!}$$

- Holds for three dimensional centrally symmetric polytropes, de la Puente and Clavería (2018)

- Question: Can our volume polynomials be used to prove the Mahler conjecture for 4-dimensional centrally symmetric polytropes?

Thank You!