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LINEAR CLASSIFIERS AND HYPERPLANE ARRANGEMENTS
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Setup 
Given data points   
in input space  
• a linear classifier is a linear function 

 

•  defines a hyperplane  in  
input space separating  from 

 

•  can be parametrized as  for 
some fixed . 

• parameter space of linear classifiers is 
. 

Classification by  (dichotomy) : 
 

Goal 
Subdivide parameter space into cells, in which 
classifiers have the same classification 

Theorem (Cover ’64, …) 
These cells are chambers in the hyperplane 
arrangement  in parameter 
space

D = {p1, …, pM} ∈ ℝd

f : ℝd → ℝ
f {x ∈ ℝd ∣ f(x) = 0}

{pi ∣ f(pi) > 0}
{pi ∣ f(pi) < 0}

f f(x) = ⟨s, x⟩ + a
s ∈ ℝd, a ∈ ℝ

{(s, a) ∣ s ∈ ℝd, a ∈ ℝ} ≅ ℝd+1

f
(sgn( f(p1)), …, sgn( f(pM)) ∈ {−,0,+}M

⋃p∈D (p,1)⊥ ⊆ ℝd+1

s

p1
p2

p4

p5

p3 ( − , + , − , − , + )
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LINEAR CLASSIFIERS AKA HYPERPLANE ARRANGEMENTS
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Thomas M. Cover. “Geometrical and Statistical Properties 
of Linear Threshold Devices”. PhD Thesis (University of 
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Goal 
Subdivide parameter space into cells, in which 
classifiers have the same classification 

Theorem (Cover ’64, …) 
These cells are chambers in the hyperplane 
arrangement  in parameter 
space

⋃p∈D (p,1)⊥ ⊆ ℝd+1
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(p1,1) (p2,1) (p3,1)

+ + +
+ + − − + +

+ − − − − +

− − −
(p3,1)⊥

(p2,1)⊥

(p1,1)⊥

input space × ℝ

parameter space

  
are the dichotomies of the data set
{ + + + , + + − , + − − , − − − , − − + , − + + }

Fix a labelling  

 makes a mistake at  if  
 makes a mistake at  if  

loss function counts number of mistakes of 

D = D+ ⊔ D−

f p ∈ D+ f(p) < 0
f p ∈ D− f(p) > 0
0/1− f

+− −

LINEAR CLASSIFIERS AND HYPERPLANE ARRANGEMENTS



THEOREM 

Let  be a finite data set. Then 

(i)  the hyperplane arrangement  
subdivides the parameter space into regions according to 
the represented dichotomies,  

(ii)  induces the normal fan of the zonotope 
, 

(iii) the dichotomies are the maximal covectors of the 
underlying realizable oriented matroid.

D ⊂ ℝd

ℋD = ⋃p∈D (1,p)⊥

ℋD
PD = ∑p∈D conv(0, (1,p))
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 { + + + , + + − , + − − , − − − , − − + , − + + }

What happens for piecewise-linear functions?



A (feed-forward) neural network is a function 
 which is an alternating 

composition 
  

of affine linear functions  
  

and fixed functions . 
Today: . 

If  (coordinate-wise) then  is 
a ReLU network (Rectified Linear Unit) with 
depth  and  architecture  

  is a piecewise linear function 

  is a tropical rational function 

  

        

        

for some . 

THEOREM (ARORA-BASU-MIANJY-MUKHERJEE, 
ZHANG-NAITZAT-LIM, ’18) 

•   is a tropical rational function 
   can be represented by a 

ReLU neural network.  
•  can be represented by a ReLU NN 

with depth   
                    . 

f : ℝd0 → ℝdL+1

f = T (L) ∘ σ ∘ … ∘ σ ∘ T (1) ∘ σ ∘ T (0)

T (l) : ℝdl → ℝdl+1, T (l)(x) = A(l)x + b(l)

σ : ℝdl → ℝdl

dL+1 = 1

σ(x) = max(0,x) f

L (d0, d1, …, dL+1)

→ f
→ f

f(x) = g − h
= max

i∈[n]
(ai + ⟨si, x⟩) − max

j∈[m] (bj + ⟨tj, x⟩)
= ⨁i∈[n] ai ⊙ x⊙si ⊘ ⨁j∈[m] bj ⊙ x⊙tj

n, m ∈ ℕ

f : ℝd → ℝ
f = g − h ⟺ f

g − h
min (⌈log2(d + 1)⌉ + 1,
max(⌈log2(n)⌉, ⌈log2(m)⌉) + 2)

MOTIVATION: RELU NEURAL NETWORKS
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Fix number of terms  of functions  

 

 is defined through its parameters  

. 

Parameter space of trop. rational functions: 

 

                       

 = set of piecewise linear 
functions represented by a ReLU network with 
architecture  

THEOREM (B.-LOHO-MONTÚFAR): 

Let . Then  

• There exist  such that 
 can be embedded into 

 

• This embedding is a basic semialgebraic set, i.e. 
described by polynomial inequalities.  

•  can be chosen as  

   and . 

Choosing  recovers the linear case

n, m
f (x) = max

i∈[n]
(ai + ⟨si, x⟩) − max

j∈[m] (bj + ⟨tj, x⟩)
f = fθ

θ = (a1 … an b1 … bm
s1 … sn t1 … tm )

Θ(d, n, m) = {θ : ai, bj ∈ ℝ, si, tj ∈ ℝd}
≅ ℝ(d+1)×(n+m)

ReLU(d0, d1, …, dL+1)

(d0, d1, …, dL+1)

d, d1, …, dL ∈ ℕ

n, m ∈ ℕ
ReLU(d, d1, …, dL,1)
Θ(d, n, m)

n, m log2(m) ≤
L

∑
k=1

2L−k
L

∏
l=k

dl

n = 2m

n, m = 1

PARAMETER SPACE OF TROPICAL RATIONAL FUNCTIONS
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FROM LINEAR TO PIECEWISE LINEAR CLASSIFICATION

9

Linear function Tropical rational function 

Separation by hyperplane Signed tropical hypersurface 

Polyhedral cone of perfect classifiers Perfect classification fan

Chambers in a hyperplane arrangement Classification fan

Arrangement of hyperplanes Arrangement of indecision surfaces

Covectors of oriented matroids Activation patterns

Zonotope Activation polytope

input space

parameter 
space 
Θ(d, n, m)



   

Decision boundary: 
 

 Polyhedral complex with  linear pieces

g − h = max
i=1,...,n

(ai + ⟨si, x⟩) − max
j=1,...,m (bj + ⟨tj, x⟩)

ℬ(g − h) = {x ∈ ℝd ∣ g(x) − h(x) = 0}
→ ≤ n ⋅ m

DECISION BOUNDARIES
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s1

s2
t1

t2
s1

s2t1

t2+

+

−

−

+

+

−

−

 

   

                       ,

g − h : ℝ2 → ℝ

g(x) − h(x) = max (a1 + ⟨s1, x⟩, a2 + ⟨s2, x⟩)
− max (b1 + ⟨t1, x⟩, b2 + ⟨t2, x⟩)

𝒯(g ⊕ h)

HOW TO CONSTRUCT THE DECISION BOUNDARY 

•  

• Subdivide  into  
   with label “ ” and  
   with label “ " 

• Tropical hypersurface  is the codim-1 
skeleton 

• Decision Boundary  is the sign-mixed 
subcomplex of  

• Dual: Regular subdivision of signed Newton 
polytope . Decision boundary is dual to 
sign-mixed edges.

g ⊕ h = max
i ∈ [n], j ∈ [m] (ai + ⟨si, x⟩, bj + ⟨tj, x⟩)

ℝd

{x ∣ g(x) ⊕ h(x) = ai + ⟨si, x⟩} +
{x ∣ g(x) ⊕ h(x) = bj + ⟨tj, x⟩} −

𝒯(g ⊕ h)

ℬ(g − h)
𝒯(g ⊕ h)

𝒩(g ⊕ h)



FROM LINEAR TO PIECEWISE LINEAR CLASSIFICATION
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Linear function Tropical rational function 

Separation by hyperplane Signed tropical hypersurface 

Polyhedral cone of perfect classifiers Perfect classification fan

Chambers in a hyperplane arrangement Classification fan

Arrangement of hyperplanes Arrangement of indecision surfaces

Covectors of oriented matroids Activation patterns

Zonotope Activation polytope

input space

parameter 
space 
Θ(d, n, m)



Given data points . 

   

determines  

 

Fix a target labelling .  
 defines a perfect classifier  if and only if 

 

 

 the set  of perfect classifiers 
 is a union of polyhedral cones 

(pure, non-complete polyhedral fan) 

Ranging over all target labelling yields a 
complete polyhedral fan: classification fan 

 How many cones does  have? 
 How many connected components? 

THEOREM (B.-LOHO-MONTÚFAR-TSERAN): 

 has   maximal cones. This 
bound is attained   are separable 
by a hyperplane and both and  and  are 
affinely independent sets.

D = {p1, …, pM} ∈ ℝd

θ = (a1 … an b1 … bm
s1 … sn t1 … tm ) ∈ Θ(d, n, m)

fθ = max
i∈[n]

(ai + ⟨si, x⟩) − max
j∈[m] (bj + ⟨tj, x⟩)

D = D+ ∪ D−

θ fθ
max
i∈[n]

ai + ⟨si, p⟩ ≥ max
j∈[m]

bj + ⟨tj, p⟩ ∀p ∈ D+

max
i∈[n]

ai + ⟨si, p⟩ ≤ max
j∈[m]

bj + ⟨tj, p⟩ ∀p ∈ D−

⟹
Σ ⊂ Θ(d, n, m)

→ Σ
→

Σ ≤ n|D+|m|D−|

⟺ D+, D−

D+ D−

CLASSIFICATION BY TROPICAL RATIONAL FUCNTIONS
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Classify 9 points in  in general position by piecewise linear 
functions (tropical rational functions) with  pieces. 

            Parameter space , subdivided into   
            -dimensional polyhedral cones. 

Fix a labelling   . 

               cones make  mistakes,  connected components 
            304 cones make  mistake,  connected components

ℝ2

n = m = 2

≅ ℝ12 41680
12

D = D+ ⊔ D−

16 0 8
1 28

PERFECT CLASSIFICATION
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+ +

+
+

+
− −

−
−

 mistake0

+ +

+
+

+
− −

−
−

 mistake1
but no path to a cone with  mistakes  

(through codimension )
0

1

Global minimum

Local minimum



THEOREM (B.-LOHO-MONTÚFAR): 
• The perfect classification fan is not always 

connected (even if the data points are in 
general position). 

• The sublevel sets of the 0/1-loss function are 
not always connected (even if the data points 
are in general position). 

CHARACTERIZATIONS OF CLASSIFICATION FAN: 
The perfect classification fan w.r.t  is 
• the set of solutions to the linear inequalities 

 

 

• the set of solutions of a system of tropical 
polynomial inequalities (tropical 
semialgebraic set) 

•  
• the collection of all cones of the activation 

fan with compatible activation pattern

D+ ⊔ D−

max
i∈[n]

ai + ⟨si, p⟩ ≥ max
j∈[m]

bj + ⟨tj, p⟩ ∀p ∈ D+

max
i∈[n]

ai + ⟨si, p⟩ ≤ max
j∈[m]

bj + ⟨tj, p⟩ ∀p ∈ D−

⋂p∈D 𝒮label(p)(p)

PERFECT CLASSIFICATION
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FROM LINEAR TO PIECEWISE LINEAR CLASSIFICATION
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Linear function Tropical rational function 

Separation by hyperplane Signed tropical hypersurface 

Polyhedral cone of perfect classifiers Perfect classification fan

Chambers in a hyperplane arrangement Classification fan

Arrangement of hyperplanes Arrangement of indecision surfaces

Covectors of oriented matroids Activation patterns

Zonotope Activation polytope

input space

parameter 
space 
Θ(d, n, m)



THEOREM  (B.-LOHO-MONTÚFAR-TSERAN) 
The indecision surface is the sign-mixed subcomplex of the normal fan of a simplex  with signs 

. 

                                                                                                                                  

Δ(p)

Δ(p) = conv ((1 0 … 0
p 0 … 0)…, (0 … 1 0 … 0

0 … p 0 … 0), (0 … 0 1 … 0
0 … 0 p … 0)…, (0 … 0 1

0 … 0 p))
+ + − −

INDECISION SURFACES
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 timesn  timesm

Linear case: Hyperplane arrangement , 
 

The indecision surface of a data point  is 
. 

 consists of  such that 

 
⋃
p∈D

(1,p)⊥

(1,p)⊥ = {(a, s) ∣ a + ⟨s, p⟩ = 0}
p ∈ D

𝒮(p) = {θ ∈ Θ(d, n, m) ∣ (gθ − hθ)(p) = 0}

𝒮(p) ai, si, bj, tj
max
i∈[n]

(ai + ⟨si, p⟩) − max
j∈[m] (bj + ⟨tj, p⟩) = 0

max
i∈[n]

⟨(ai
si), (1

p)⟩ − max
j∈[m]

⟨(bj

tj), (1
p)⟩ = 0

+

+

−

−

+

+

−

−



 if ,   

 if  

 

 subdivides the parameter space into 
 and  
.

label(p) = + p ∈ D+

label(p) = − p ∈ D−

𝒮(p) = {θ ∈ Θ(d, n, m) ∣ (gθ − hθ)(p) = 0}

𝒮(p)
𝒮+(p) = {θ ∣ (gθ − hθ)(p) ≥ 0}
𝒮−(p) = {θ ∣ (gθ − hθ)(p) ≤ 0}

INDECISION SURFACES
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CHARACTERIZATIONS OF CLASSIFICATION FAN: 
The perfect classification fan w.r.t  is 
• the set of solutions to the linear inequalities 

 

 

• the set of solutions of a system of tropical 
polynomial inequalities (tropical semialgebraic set) 

•  
• the collection of all cones of the activation fan with 

compatible activation pattern

D+ ⊔ D−

max
i∈[n]

ai + ⟨si, p⟩ ≥ max
j∈[m]

bj + ⟨tj, p⟩ ∀p ∈ D+

max
i∈[n]

ai + ⟨si, p⟩ ≤ max
j∈[m]

bj + ⟨tj, p⟩ ∀p ∈ D−

⋂p∈D 𝒮label(p)(p)
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Linear function Tropical rational function 

Separation by hyperplane Signed tropical hypersurface 

Polyhedral cone of perfect classifiers Perfect classification fan

Chambers in a hyperplane arrangement Classification fan

Arrangement of hyperplanes Arrangement of indecision surfaces

Covectors of oriented matroids Activation patterns

Zonotope Activation polytope

input space

parameter 
space 
Θ(d, n, m)



Given data points , 
parameter ,  
function .  

Recall:  

 

 lies in the region  of  
     
    activates the term  

activation pattern: bipartite graph  
  
  

 generalization of covectors of oriented matroids

D = {p1, …, pM} ∈ ℝd

θ ∈ Θ(d, n, m)
fθ(x) = gθ(x) − hθ(x)

gθ ⊕ hθ = max
i ∈ [n], j ∈ [m] (ai + ⟨si, x⟩, bj + ⟨tj, x⟩)

p sk 𝒯(gθ ⊕ hθ)
⟺ gθ(p) ⊕ hθ(p) = ak + ⟨sk, p⟩
⟺ p sk

Gθ = (V, E)
V = D ⊔ [N ]
E = {pk ∣ p activates term k of gθ ⊕ hθ}
→

CLASSIFICATION BY TROPICAL POLYNOMIALS
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s1

s2
t1

t2

𝒯(gθ ⊕ hθ)

p1

p2

p3

p1

p2

p3

s1

t2

s2

t1

D [n] ⊔ [m]

( − , + , − , − , + )

p1
p2

p4

p5

p3

+−

p1

p2

p3

+

−p4

p5



CLASSIFICATION BY TROPICAL POLYNOMIALS
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activation cone of a bipartite graph :    
activation fan = collection of all nonempty activation cones (over all bipartite graphs) 

 complete fan in  

A data point  defines a -dimensional simplex  

  

activation polytope         generalization of zonotope 

THEOREM (B.-LOHO-MONTÚFAR-TSERAN) 
• The activation fan is the normal fan of the activation polytope. 
• The activation fan coincides with the classification fan 
• The perfect classification fan consists of all cones with compatible activation pattern

G C(G) = {θ ∣ G = Gθ is activation pattern}

→ Θ(d, n, m)

p ∈ ℝd (N − 1)

Δ(p) = conv ((1 0 … 0
p 0 … 0)…, (0 … 1 0 … 0

0 … p 0 … 0), (0 … 0 1 … 0
0 … 0 p … 0)…, (0 … 0 1

0 … 0 p))
= ∑

p∈D

Δ(p) →
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DEFINITION (ORIENTED MATROID) 
An oriented matroid is a pair , where 

 are covectors satisfying 
• (Zero)          
• (Symmetry)  

• (Composition) if  then  
• (Elimination)   if  and  then there 

exists some  such that  and 
.

([M ], 𝒞)
𝒞 ⊆ {−,0,+}[M]

(0,…,0) ∈ 𝒞
C ∈ 𝒞 ⟹ − C ∈ 𝒞

C, D ∈ 𝒞 (C ∘ D) ∈ 𝒞
C, D ∈ 𝒞 i ∈ S(C, D)

Z ∈ 𝒞 Zi = 0
Zj = (C ∘ D)j ∀j ∈ [M ]∖S(C, D)

DEFINITION (TROPICAL ORIENTED MATROID) 
A tropical oriented matroid is a pair , 
where  
are tropical covectors satisfying 
• (Elimination)     If  and  then 

there exists a type  with  and 
 for all . 

• (Boundary)       For each  holds 
 

• (Comparability) The comparability graph 
 of any two types  and  in  is acyclic. 

• (Surrounding)   If  the any refinement is 
also in .

([M ], 𝒯)
𝒯 ⊆ {(A1, …, AM) ∣ Ai ⊆ [N ], i ∈ [M ]}

A, B ∈ T j ∈ [D]
C ∈ T Cj = Aj ∪ Bj

Ck ∈ {Ak, Bk, Ak ∪ Bk} k ∈ [D]
j ∈ [N ]

({j}, …, {j}) ∈ T

CGA,B A B T
A ∈ T

T

THEOREM (ACTIVATION PATTERNS) 
Let  be the set of activation patterns of the activation 
fan. Then  satisfies 
• (Zero)                 

• (Symmetry)       any graph isomorphic to 
 under the action of  is contained in  

• (Composition)   
• (Elimination)     If ,  then there exists 

a graph  with  
• (Boundary)       For each  and  the bipartite 

graph with edges  holds  
• (Comparability) For any , , the 

comparability graph  is acyclic

𝒢
𝒢

KN,D ∈ 𝒢
G ∈ 𝒢 ⟹

G SN 𝒢
G, H ∈ 𝒢 ⟹ G ∘ H ∈ 𝒢

G, H ∈ 𝒢 p ∈ D
F ∈ 𝒢 N(p; F ) = N(p; G) ∪ N(p; H )

i ∈ [N ] G
E(G) = {pi ∣ p ∈ D} G ∈ 𝒢

p ∈ D G, H ∈ 𝒢
CGp

G,H

ACTIVATION PATTERNS

→

→
→
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THANK YOU


