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OVERVIEW

Part I: Combinatorial Approaches to Deep Learning
* Motivation: Parameter space of Linear Classifiers

 Parameter Space of ReLU Classifiers

Part ll: Algebraic Approaches to Deep Learning
* Motivation: Dynamics of gradient descent

« Polynomial invariances of a NN when optimizing its parameters using gradient descent
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LINEAR CLASSIFIERS

Setup
Given data points D = {p,,...,p,} € R¢,
a is a linear function f : RY - R

- fdefines a hyperplane {x € R? | f(x) = 0} in
input space separating {p; | f(p;,) > 0} from
{p: | f(p) <0}

« fcan be parametrized as f(x) = {(a, x) + b for
some fixed a € R4, b € R.

{(a,b) |a e R, b e R} = R

by f:
(sgn(f(p1)), ..., sgn(f(p,) € {—.0,+}"

Goal
Subdivide parameter space into cells, in which
classifiers have the same classification

Theorem
These cells are chambers in the hyperplane

arrangement UpeD(p,l)l C R4+!
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LINEAR CLASSIFIERS

Fix a labeling D = DT u D~ Proposition:

All local minima are global minima.

More precisely, for any chamber D there exist a chamber
C with minimum number of mistakes and a sequence
0/1—loss counts number of mistakes of f D =Dy,D,,...,D,D,., = Csuchthat D, D, are

connected through codimension 1 and the number of
mistakes is strictly decreasing.

fmakes a mistake atp € DY if f(p) <0
fmakes a mistake atp € D™ if f(p) > 0
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RELU NNS AND TROPICAL GEOMETRY

D C R4 data points, classified by a ReLU NN

Theorem [Arora-Basu-Mianjy-Mukherjee ‘18]:

Every ReLU NN represents a piecewise
linear function, and every piecewise linear
function f : R? - R can be represented by a
ReLU NN with at most [log,(d + 1)] + 1
depth.

Theorem [Zhang-Naitzat-Lim ’18]:

Every ReLU NN represents a

, and every tropical rational function
f = g @ h can be represented by a ReLU NN
with at most max([log,(n)], [log,(m)]) + 2
depth, where n, m are the number of
monomials of g, i respectively.

— Tropical Intermezzo —
a®b=max(a,b), a®@b=a+b, a@b=a—-b, x°* =qa-x

classical rational function
fx) = (Z Xyt )/(Z_lbx X )

tropical rational function
— n @Si @Si m @tl @td
f_(@lzlalexl 1®"'®xd d)@( lebJQXIJ @...@de)

= iiIIlaXn (ai + 85+ ..+ ded) —]nllaxm (b + 50+ .+ l}-dxd>

= max (a + <SZ,X>) — max (bj+ (tj,x)> a,b, ER, 5,1, € R4
i=1,..., j=1,...,

= difference of two convex piecewise linear functions

(n,m) = (1,1) recovers linear classifiers



DECISION BOUNDARIES OF RELU NNS

ReLU NNs: f(x) = max (al- + (s, x)) — max (bj + (1, x))

i=1,....,n j=1,...m
Decision boundary {x € R?| f(x) = 0}

Linear classifiers: hyperplanes
RelLU: Polyhedral complexes with at most n - m linear pieces

+ +
" . " +
input dimension

d=72 -

(n,m) =(2,2) (n,m) = (2,2) (n,m) = (2,2) (n,m) = (3,1)



SUBDIVISION OF PARAMETER SPACE

ReLU NNs: f(x) = max (a + (s, x)) — max (bj+ (£, x))
i=1,..., j=1,...,

of tropical rational functions with (n, m) terms:

{0 =(ay, 80 ...y 8, b1, 1, by 1) | G, by € R, s, 1 € RY) x RUTDE@HD

into cells, where classifiers have the same classification:
for fixed labelling D = D* LI D™, consider 8 = (ay, S, ..., a,, S, by, 1y, - t,,) such that

9m7

max (al-+(sl-,p)) — max (b + (7 p)) > (O forallp € DF
=1,...,n 1
max (al-+(sl-,p)) — max (b + (1 p)) <Oforallp e D™
. i

— union of polyhedral cones



LINEAR AND RELU CLASSIFIERS

Polyhedral cone

Union of polyhedral cones

Hyperplane arrangement:

normal fan of a polytope

* Minkowski sum of 1-dimensional simplices
(line segments)

* one summand per data point

Polyhedral fan:

normal fan of a polytope

* Minkowski sum of (n+m-1)-dimensional
simplices

* one summand per data point

All local minima of 0/1-loss are global minima

Local minima are not global minima
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LOCAL AND GLOBAL MINIMA n n

Classify 9 points in R?in general position by piecewise linear

functions (tropical rational functions) with n = m = 2 pieces. Global minimum

Parameter space = R!?, subdivided into 41680
12-dimensional polyhedral cones.

Fix a labeling D = Dt U D

E 16 cones make O mistakes, 8 connected components
304 cones make 1 mistake, 28 connected components

\/ -+ Local minimum
.
)
_I_‘/\
1 mistake ‘+

but no path to a cone with 0 mistakes
(through codimension 1)
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LINEAR AND RELU CLASSIFIERS

Polyhedral cone

Union of polyhedral cones

Hyperplane arrangement:

normal fan of a polytope

* Minkowski sum of 1-dimensional simplices
(line segments)

* one summand per data point

Polyhedral fan:

normal fan of a polytope

* Minkowski sum of (n+m-1)-dimensional
simplices

* one summand per data point

All local minima of 0/1-loss are global minima

Local minima are not global minima
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TRAJECTORIES OF GRADIENT DESCENT

Parametric model

The parametrization map takes parameter values
6 € ® C R? to functions f( - ,0) € F. We denote
this map as

u:0—x
00— f(-,0).

The set & can be continuous functions from one set
to another, for example.

Loss function

Consider a loss function £ on &. The corresponding
loss on the parameter space ©® is defined as

Z(0) = ¢(u0)).
Trajectories of Gradient descent

Consider the trajectory of parameter values 6(¢t) for
t > 0 of the dynamical system

‘9(0) — 9(),

19(1‘) =—VZ(0)
dt

13



INVARIANCES OF TRAJECTORIES

Consider the trajectory of parameter values 6(¢)
for t > O of the dynamical system

0(0) = 6,

ie(r) — VZ(O®))
dt

An invariance of the trajectory is a function

g:0 —R
such that g(8(¢)) = O for every t > 0.
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INVARIANCES OF TRAJECTORIES

Short term goals

* For LNN: determine if the invariances previously
known are complete (for quadratic loss)

 Design a systematic procedure to find such
invariances

Medium term goals
» Extend our methods to general loss functions

» Extend to optimization procedures with finite step
size

Long term goals

 Are extensions to sparsely connected linear
networks or piecewise polynomially parametrized
models possible?
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