

0 0 0 0 0 0 0 0 0

COMBINATORIAL AND ALGEBRAIC APPROACHES TO DEEP LEARNING

Marie-Charlotte Brandenburg and Angélica Torres

0

Annual Meeting: Theoretical Foundations of Deep Learning 6 November 2023

Project: Combinatorial and Implicit Approaches to Deep Learning Members: Marie-Charlotte Brandenburg, Guido Montúfar, Johannes Müller, Angélica Torres, Hanna Tseran, Bernd Sturmfels

OVERVIEW

Part I: Combinatorial Approaches to Deep Learning

- Motivation: Parameter space of Linear Classifiers
- Parameter Space of ReLU Classifiers

Part II: Algebraic Approaches to Deep Learning

- Motivation: Dynamics of gradient descent
- Polynomial invariances of a NN when optimizing its parameters using gradient descent

PART I: COMBINATORIAL APPROACHES TO DEEP LEARNING

0

Georg Loho	0	0	0 0 0 0		Gι	Jid	0	Nor	ntú	far	D	0 0	0												
FU Berlin University of Twente		0	0 0	>	UC	; L	A	MF	DI N	ЛiS	D	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 0 0 0 0 0 0 0 0 0	0	0	0 0		0 0	0	0 0	0	0	0	0	•	0	0	0	0	0	0	•	0	0	•	•	•	0

LINEAR CLASSIFIERS

Setup

Given data points $D = \{p_1, ..., p_n\} \in \mathbb{R}^d$, a linear classifier is a linear function $f : \mathbb{R}^d \to \mathbb{R}$

- *f* defines a hyperplane $\{x \in \mathbb{R}^d \mid f(x) = 0\}$ in input space separating $\{p_i \mid f(p_i) > 0\}$ from $\{p_i \mid f(p_i) < 0\}$
- *f* can be parametrized as $f(x) = \langle a, x \rangle + b$ for some fixed $a \in \mathbb{R}^d$, $b \in \mathbb{R}$.
- parameter space of linear classifiers is $\{(a, b) \mid a \in \mathbb{R}^d, b \in \mathbb{R}\} \cong \mathbb{R}^{d+1}.$

Classification by f: $(\operatorname{sgn}(f(p_1)), \dots, \operatorname{sgn}(f(p_n)) \in \{-,0,+\}^n$

Goal

Subdivide parameter space into cells, in which classifiers have the same classification

Theorem

These cells are chambers in the hyperplane arrangement $\bigcup_{p\in D} (p,1)^{\perp}\subseteq \mathbb{R}^{d+1}$

LINEAR CLASSIFIERS

Fix a labelling $D = D^+ \sqcup D^-$

f makes a mistake at $p \in D^+$ if f(p) < 0f makes a mistake at $p \in D^-$ if f(p) > 0

0/1 - loss counts number of mistakes of f

Proposition:

All local minima are global minima.

More precisely, for any chamber D there exist a chamber C with minimum number of mistakes and a sequence $D = D_0, D_1, \ldots, D_k, D_{k+1} = C$ such that D_i, D_{i+1} are connected through codimension 1 and the number of mistakes is strictly decreasing.

CAN WE GENERALIZE THIS TO LARGER CLASSES OF CLASSIFIERS?

RELU NNS AND TROPICAL GEOMETRY

 $D \subseteq \mathbb{R}^d$ data points, classified by a ReLU NN

Theorem [Arora-Basu-Mianjy-Mukherjee '18]:

Every ReLU NN represents a piecewise linear function, and every piecewise linear function $f : \mathbb{R}^d \to \mathbb{R}$ can be represented by a ReLU NN with at most $\lceil \log_2(d+1) \rceil + 1$ depth.

Theorem [Zhang-Naitzat-Lim '18]:

Every ReLU NN represents a tropical rational function, and every tropical rational function $f = g \oslash h$ can be represented by a ReLU NN with at most max($\lceil \log_2(n) \rceil$, $\lceil \log_2(m) \rceil$) + 2 depth, where n, m are the number of monomials of g, h respectively.

— Tropical Intermezzo —

 $a \oplus b = \max(a, b), \ a \odot b = a + b, \ a \oslash b = a - b, \ x^{\odot a} = a \cdot x$

classical rational function

$$\tilde{f}(x) = \left(\sum_{i=1}^{n} a_i x_1^{s_{i1}} \cdots x_d^{s_{id}}\right) / \left(\sum_{j=1}^{m} b_j x_1^{t_{j1}} \cdots x_d^{t_{jd}}\right)$$

tropical rational function

$$\begin{aligned} & \mathcal{L} = \left(\bigoplus_{i=1}^{n} a_i \odot x_1^{\odot s_{i1}} \odot \dots \odot x_d^{\odot s_{id}} \right) \oslash \left(\bigoplus_{j=1}^{m} b_j \odot x_1^{\odot t_{j1}} \odot \dots \odot x_d^{\odot t_{jd}} \right) \\ &= \max_{i=1,\dots,n} \left(a_i + s_{i1} x_1 + \dots + s_{id} x_d \right) - \max_{j=1,\dots,m} \left(b_j + t_{j1} x_1 + \dots + t_{jd} x_d \right) \\ &= \max_{i=1,\dots,n} \left(a_i + \langle s_i, x \rangle \right) - \max_{j=1,\dots,m} \left(b_j + \langle t_j, x \rangle \right), \quad a_i, b_j \in \mathbb{R}, \ s_i, t_j \in \mathbb{R}^d \end{aligned}$$

(n,m) = (1,1) recovers linear classifiers

DECISION BOUNDARIES OF RELU NNS

ReLUNNS:
$$f(x) = \max_{i=1,\dots,n} \left(a_i + \langle s_i, x \rangle \right) - \max_{j=1,\dots,m} \left(b_j + \langle t_j, x \rangle \right)$$

Decision boundary $\{x \in \mathbb{R}^d \mid f(x) = 0\}$

Linear classifiers: hyperplanes

ReLU: Polyhedral complexes with at most $n \cdot m$ linear pieces

SUBDIVISION OF PARAMETER SPACE

ReLU NNs: $f(x) = \max_{i=1,\dots,n} (a_i + \langle s_i, x \rangle) - \max_{j=1,\dots,m} (b_j + \langle t_j, x \rangle)$

Parameter space of tropical rational functions with (n, m) terms:

$$\{\theta = (a_1, s_s, \dots, a_n, s_n, b_1, t_1, \dots, b_m, t_m) \mid a_i, b_i \in \mathbb{R}, s_i, t_j \in \mathbb{R}^d\} \cong \mathbb{R}^{(m+n)(d+1)}$$

Subdivide parameter space into cells, where classifiers have the same classification: for fixed labelling $D = D^+ \sqcup D^-$, consider $\theta = (a_1, s_s, ..., a_n, s_n, b_1, t_1, ..., b_m, t_m)$ such that $\max_{i=1,...,n} (a_i + \langle s_i, p \rangle) - \max_{i=1,...,m} (b_j + \langle t_j, p \rangle) > 0 \text{ for all } p \in D^+$

$$\max_{i=1,\dots,n} \left(a_i + \langle s_i, p \rangle \right) - \max_{j=1,\dots,m} \left(b_j + \langle t_j, p \rangle \right) < 0 \text{ for all } p \in D^-$$

 \implies union of polyhedral cones

LINEAR AND RELU CLASSIFIERS

	Linear	Piecewise linear / tropical rational / ReLU [BLoho-Montúfar
Parameters of same classification	Polyhedral cone	Union of polyhedral cones
Subdivision of parameter space	 Hyperplane arrangement: normal fan of a polytope Minkowski sum of 1-dimensional simplices (line segments) one summand per data point 	 Polyhedral fan: normal fan of a polytope Minkowski sum of (n+m-1)-dimensional simplices one summand per data point
Local and global minima	All local minima of 0/1-loss are global minima	Local minima are not global minima

LOCAL AND GLOBAL MINIMA

Classify 9 points in \mathbb{R}^2 in general position by piecewise linear functions (tropical rational functions) with n = m = 2 pieces.

Parameter space $\cong \mathbb{R}^{12}$, subdivided into 41680 12-dimensional polyhedral cones.

Fix a labelling $D = D^+ \sqcup D^-$.

16 cones make 0 mistakes, 8 connected components 304 cones make 1 mistake, 28 connected components

LINEAR AND RELU CLASSIFIERS

	Linear	Piecewise linear / tropical rational / ReLU [BLoho-Montúfar
Parameters of same classification	Polyhedral cone	Union of polyhedral cones
Subdivision of parameter space	 Hyperplane arrangement: normal fan of a polytope Minkowski sum of 1-dimensional simplices (line segments) one summand per data point 	 Polyhedral fan: normal fan of a polytope Minkowski sum of (n+m-1)-dimensional simplices one summand per data point
Local and global minima	All local minima of 0/1-loss are global minima	Local minima are not global minima

Next Steps: Relate to fixed architectures of ReLU NNs

PART II: ALGEBRAIC APPROACHES TO DEEP LEARNING

0

0

TRAJECTORIES OF GRADIENT DESCENT

٠

Parametric model

The parametrization map takes parameter values $\theta \in \Theta \subseteq \mathbb{R}^p$ to functions $f(\cdot, \theta) \in \mathcal{F}$. We denote this map as

$$\mu: \Theta \longrightarrow \mathscr{F} \\ \theta \longmapsto f(\,\cdot\,,\theta)$$

The set \mathcal{F} can be continuous functions from one set to another, for example.

Loss function

Consider a loss function ℓ on \mathcal{F} . The corresponding loss on the parameter space Θ is defined as

 $\mathscr{L}(\theta) = \ell(\mu(\theta)) \,.$

Trajectories of Gradient descent

Consider the trajectory of parameter values $\theta(t)$ for $t \ge 0$ of the dynamical system

$$\theta(0) = \theta_0,$$
$$\frac{d}{dt}\theta(t) = -\nabla \mathscr{L}(\theta(t))$$

INVARIANCES OF TRAJECTORIES

Consider the trajectory of parameter values $\theta(t)$ for $t \ge 0$ of the dynamical system

$$\theta(0) = \theta_0,$$
$$\frac{d}{dt}\theta(t) = -\nabla \mathscr{L}(\theta(t))$$

An invariance of the trajectory is a function

$$g: \Theta \longrightarrow \mathbb{R}$$

such that $g(\theta(t)) = 0$ for every $t \ge 0$.

INVARIANCES OF TRAJECTORIES

Short term goals

- For LNN: determine if the invariances previously known are complete (for quadratic loss)
- Design a systematic procedure to find such invariances

Medium term goals

- Extend our methods to general loss functions
- Extend to optimization procedures with finite step size

Long term goals

• Are extensions to sparsely connected linear networks or piecewise polynomially parametrized models possible?

 Original contribution
 Image: Control of the contro

Deep Learning without Poor Local Minima Thank You Ken Massachusett: kave Understanding ;

In this paper, we prove a conject an open problem announced at t With no unrealistic assumption

 Ker

 Massachusetti

 kawi

 Understanding the Dynamics of Gradient

 Flow in Overparameterized Linear model

 Julie remaining Conference on Machine Learning, PMLR 139:10153-10161, 2021.

On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization

Sanjeev Arora¹² Naday Cohen² Elad Hazan¹³

Abstract

Conventional wisdom in deep learning states that increasing depth improves expressiveness but complicates optimization. This paper suggests Given the longstanding consensus on expressiveness vs. optimization trade-offs, this paper conveys a rather counterintuitive message: increasing depth can *accelerate* optimization. The effect is shown, via first-cut theoretical and

