Intersection Bodies of Polytopes

Marie Brandenburg

Combinatorial Coworkspace

23 March 2022

Katalin Berlow UC Berkeley

Chiara Meroni MPI MiS

Isabelle Shankar
University of Illinois

Overview

(1) Definition
(2) History
(3) Computing Intersection Bodies
(4) The algebraic boundary

Definition $>$ Radial functions and star bodies

A bounded set K is a star body if for every $s \in K$ holds $[0, s] \subseteq K$.

Definition $>$ Radial functions and star bodies

A bounded set K is a star body if for every $s \in K$ holds $[0, s] \subseteq K$. The radial function of K is

$$
\begin{aligned}
\rho_{K}: \mathbb{R}^{d} & \rightarrow \mathbb{R} \\
x & \mapsto \max (\lambda \in \mathbb{R} \mid \lambda x \in K) .
\end{aligned}
$$

Note that $\rho_{K}(\lambda x)=\frac{1}{\lambda} x$ for $\lambda>0$.

Definition $>$ Radial functions and star bodies

A bounded set K is a star body if for every $s \in K$ holds $[0, s] \subseteq K$. The radial function of K is

$$
\begin{aligned}
\rho_{K}: \mathbb{R}^{d} & \rightarrow \mathbb{R} \\
x & \mapsto \max (\lambda \in \mathbb{R} \mid \lambda x \in K) .
\end{aligned}
$$

Note that $\rho_{K}(\lambda x)=\frac{1}{\lambda} x$ for $\lambda>0$.
Given a radial function ρ, we associate

$$
K=\left\{x \in \mathbb{R}^{d} \mid \rho(x) \geq 1\right\} .
$$

Definition $>$ Radial functions and star bodies

A bounded set K is a star body if for every $s \in K$ holds $[0, s] \subseteq K$. The radial function of K is

$$
\begin{aligned}
\rho_{K}: \mathbb{R}^{d} & \rightarrow \mathbb{R} \\
x & \mapsto \max (\lambda \in \mathbb{R} \mid \lambda x \in K) .
\end{aligned}
$$

Note that $\rho_{K}(\lambda x)=\frac{1}{\lambda} x$ for $\lambda>0$.
Given a radial function ρ, we associate

$$
K=\left\{x \in \mathbb{R}^{d} \mid \rho(x) \geq 1\right\} .
$$

Definition

Let P be a polytope. Then the intersection body $I P$ of P is given by the radial function (restricted to the sphere)

$$
\rho_{I P}(u)=\operatorname{vol}_{d-1}\left(P \cap u^{\perp}\right)
$$

for $u \in S^{d-1}$.

Definition $>$ Radial functions and star bodies

History > Busemann-Petty problem

History > Busemann-Petty problem

Conjecture [Busemann, Petty (1956)]

Let $K, T \subseteq \mathbb{R}^{d}$ be symmetric convex bodies such that for any hyperplane H through the origin holds

$$
\operatorname{vol}_{d-1}(K \cap H) \leq \operatorname{vol}_{d-1}(T \cap H)
$$

Then also

$$
\operatorname{vol}_{d}(K) \leq \operatorname{vol}_{d}(T)
$$

History > Busemann-Petty problem

Conjecture [Busemann, Petty (1956)]

Let $K, T \subseteq \mathbb{R}^{d}$ be symmetric convex bodies such that for any hyperplane H through the origin holds

$$
\operatorname{vol}_{d-1}(K \cap H) \leq \operatorname{vol}_{d-1}(T \cap H)
$$

Then also

$$
\operatorname{vol}_{d}(K) \leq \operatorname{vol}_{d}(T)
$$

Lutwak (1988) The Busemann-Petty problem is true in dimension $d \Longleftrightarrow$ every symmetric convex body of dimension d is an intersection body.

History > Busemann-Petty problem

Conjecture [Busemann, Petty (1956)]

Let $K, T \subseteq \mathbb{R}^{d}$ be symmetric convex bodies such that for any hyperplane H through the origin holds

$$
\operatorname{vol}_{d-1}(K \cap H) \leq \operatorname{vol}_{d-1}(T \cap H)
$$

Then also

$$
\operatorname{vol}_{d}(K) \leq \operatorname{vol}_{d}(T)
$$

Lutwak (1988) The Busemann-Petty problem is true in dimension $d \Longleftrightarrow$ every symmetric convex body of dimension d is an intersection body.

Gardner (1994), Koldobsky (1998), Zhang (1999),
Gardner-Kodlobsky-Schlumprecht (1999) The conjecture is true if and only if $d \leq 4$.

History > Facts

- For any intersection body holds $I K=-I K$
- $P \subseteq \mathbb{R}^{2}$ polygon and $P=-P$
$\Longrightarrow I P=2 \varphi_{90}(P)\left(\varphi_{90}=\right.$ rotation by 90 degrees $)$
- $K \subseteq \mathbb{R}^{d}$ is a full-dimensional, convex body and $K=-K$
$\Longrightarrow I K$ is a full-dimensional convex body (and $I K=-I K$)
- $K \subseteq \mathbb{R}^{d}$ star body, $d \geq 3$
$\Longrightarrow I K$ is not a polytope (Campi '99, Zhang '99)

Motivation and Results

Let $P \subseteq \mathbb{R}^{d}$ be a polytope with intersection body $I P$.

Goals

- Compute the radial function $\rho_{I P}$ explicitly
- Understand the boundary of $I P$ \& its equations.

Motivation and Results

Let $P \subseteq \mathbb{R}^{d}$ be a polytope with intersection body $I P$.

Goals

- Compute the radial function $\rho_{I P}$ explicitly
- Understand the boundary of $I P$ \& its equations.

Thereom 1

$I P$ is semialgebraic, i.e. a subset of \mathbb{R}^{d} defined by finite unions and intersections of polynomial inequalities.

Motivation and Results

Let $P \subseteq \mathbb{R}^{d}$ be a polytope with intersection body $I P$.

Goals

- Compute the radial function $\rho_{I P}$ explicitly
- Understand the boundary of $I P$ \& its equations.

Thereom 1

$I P$ is semialgebraic, i.e. a subset of \mathbb{R}^{d} defined by finite unions and intersections of polynomial inequalities.

Theorem 2

The degree of the irreducible components of the algebraic boundary of $I P$ is bounded by

$$
\text { number of edges of } P-(\operatorname{dim}(P)-1)) \text {. }
$$

Computing Intersection Bodies > 3-cube

Let $P=[-1,1]^{3}, x \in \mathbb{R}^{3}$. Then $Q=P \cap x^{\perp}$ can have different shapes.

Computing Intersection Bodies > 3-cube

Let $P=[-1,1]^{3}, x \in \mathbb{R}^{3}$. Then $Q=P \cap x^{\perp}$ can have different shapes.
vertices of $Q \longleftrightarrow$ edges of P

Computing Intersection Bodies >3-cube

Let $P=[-1,1]^{3}, x \in \mathbb{R}^{3}$. Then $Q=P \cap x^{\perp}$ can have different shapes.
vertices of $Q \longleftrightarrow$ edges of P
First question:
Which subsets $C \subseteq \mathbb{R}^{3}$ have the following property: $\forall x \in C: x^{\perp}$ intersects a fixed set of edges of P.

Computing Intersection Bodies >3-cube

Let $P=[-1,1]^{3}, x \in \mathbb{R}^{3}$. Then $Q=P \cap x^{\perp}$ can have different shapes.
vertices of $Q \longleftrightarrow$ edges of P
First question:
Which subsets $C \subseteq \mathbb{R}^{3}$ have the following property:
$\forall x \in C: x^{\perp}$ intersects a fixed set of edges of P.
General idea: Write the volume of $P \cap x^{\perp}$ in terms of $x \in \mathbb{R}^{3}$.

Computing $\left.\rho_{I P}\right\rangle$ Hyperplane Arrangement H

$H=\left\{v^{\perp} \mid v\right.$ is a vertex of P and $\left.v \neq 0\right\}$ hyperplane arrangement.

Computing $\left.\rho_{I P}\right\rangle$ Hyperplane Arrangement H

$H=\left\{v^{\perp} \mid v\right.$ is a vertex of P and $\left.v \neq 0\right\}$ hyperplane arrangement.
C max chamber of H
$\Rightarrow \forall x \in C: x^{\perp}$ intersects P in fixed set of edges

Computing $\left.\rho_{I P}\right\rangle$ Hyperplane Arrangement H

$H=\left\{v^{\perp} \mid v\right.$ is a vertex of P and $\left.v \neq 0\right\}$ hyperplane arrangement.
C max chamber of H
$\Rightarrow \forall x \in C: x^{\perp}$ intersects P in fixed set of edges
"Pieces" of $\partial I P \longleftrightarrow$ open chambers of H

Computing $\left.\rho_{I P}\right\rangle$ Hyperplane Arrangement H

$H=\left\{v^{\perp} \mid v\right.$ is a vertex of P and $\left.v \neq 0\right\}$ hyperplane arrangement.
C max chamber of H
$\Rightarrow \forall x \in C: x^{\perp}$ intersects P in fixed set of edges
The polyhedral fan induced by H is the normal fan of the zonotope

$$
Z(P)=\sum_{v \text { vertex of } P}[-v, v]
$$

"Pieces" of $\partial I P \longleftrightarrow$ open chambers of H

Computing $\left.\rho_{I P}\right\rangle$ Hyperplane Arrangement H

$H=\left\{v^{\perp} \mid v\right.$ is a vertex of P and $\left.v \neq 0\right\}$ hyperplane arrangement.
C max chamber of H
$\Rightarrow \forall x \in C: x^{\perp}$ intersects P in fixed set of edges
The polyhedral fan induced by H is the normal fan of the zonotope

$$
Z(P)=\sum_{v \text { vertex of } P}[-v, v]
$$

"Pieces" of $\partial I P \longleftrightarrow$ open chambers of H \longleftrightarrow vertices of $Z(P)$

Computing $\left.\rho_{I P}\right\rangle$ Hyperplane Arrangement H

$H=\left\{v^{\perp} \mid v\right.$ is a vertex of P and $\left.v \neq 0\right\}$ hyperplane arrangement.
C max chamber of H
$\Rightarrow \forall x \in C: x^{\perp}$ intersects P in fixed set of edges
The polyhedral fan induced by H is the normal fan of the zonotope

$$
Z(P)=\sum_{v \text { vertex of } P}[-v, v]
$$

"Pieces" of $\partial I P \longleftrightarrow$ open chambers of H
\longleftrightarrow vertices of $Z(P)$
\longleftrightarrow facets of $Z(P)^{\circ}$

Computing $\left.\rho_{I P}\right\rangle Z(P)$ can have many Ps!

left: $\quad I P_{1}$ for $P_{1}=[-1,1]^{3}$
right: $\quad I P_{2}$ for $P_{2}=\operatorname{conv}\left(\left(\begin{array}{c}-1 \\ -1 \\ -1\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)\right)$
center: $\quad Z\left(P_{1}\right)^{\circ}=Z\left(P_{2}\right)^{\circ}$
\Rightarrow The zonotope $Z(P)$ does not determine the polytope P or the intersection body $I P$!

Computing $\rho_{I P}>I P$ is semialgebraic

Lemma

Let $C \subseteq H$ be an open chamber. Then there exist polynomials $p(x), q(x) \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$ such that for all $u \in C \cap S^{d-1}$ holds

$$
\operatorname{vol}_{d-1}\left(P \cap u^{\perp}\right)=\frac{p(u)}{\|u\| q(u)}
$$

Computing $\left.\rho_{I P}\right\rangle I P$ is semialgebraic

Lemma

Let $C \subseteq H$ be an open chamber. Then there exist polynomials $p(x), q(x) \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$ such that for all $u \in C \cap S^{d-1}$ holds

$$
\operatorname{vol}_{d-1}\left(P \cap u^{\perp}\right)=\frac{p(u)}{\|u\| q(u)}
$$

$$
I P \cap C=\{x \in C \mid \rho(x) \geq 1\}
$$

Computing $\left.\rho_{I P}\right\rangle I P$ is semialgebraic

Lemma

Let $C \subseteq H$ be an open chamber. Then there exist polynomials $p(x), q(x) \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$ such that for all $u \in C \cap S^{d-1}$ holds

$$
\begin{aligned}
& \operatorname{vol}_{d-1}\left(P \cap u^{\perp}\right)=\frac{p(u)}{\|u\| q(u)} . \\
& \begin{aligned}
I P \cap C & =\{x \in C \mid \rho(x) \geq 1\} \\
& =\left\{x \in C \left\lvert\, \frac{p(x)}{\|x\|^{2} q(x)} \geq 1\right.\right\}
\end{aligned}
\end{aligned}
$$

Computing $\left.\rho_{I P}\right\rangle I P$ is semialgebraic

Lemma

Let $C \subseteq H$ be an open chamber. Then there exist polynomials $p(x), q(x) \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$ such that for all $u \in C \cap S^{d-1}$ holds

$$
\begin{aligned}
& \operatorname{vol}_{d-1}\left(P \cap u^{\perp}\right)=\frac{p(u)}{\|u\| q(u)} . \\
& \begin{aligned}
I P \cap C & =\{x \in C \mid \rho(x) \geq 1\} \\
& =\left\{x \in C \left\lvert\, \frac{p(x)}{\|x\|^{2} q(x)} \geq 1\right.\right\} \\
& =\left\{x \in C \mid\|x\|^{2} q(x)-p(x) \leq 0\right\} .
\end{aligned}
\end{aligned}
$$

Computing $\left.\rho_{I P}\right\rangle I P$ is semialgebraic

Lemma

Let $C \subseteq H$ be an open chamber. Then there exist polynomials $p(x), q(x) \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$ such that for all $u \in C \cap S^{d-1}$ holds

$$
\begin{aligned}
& \operatorname{vol}_{d-1}\left(P \cap u^{\perp}\right)=\frac{p(u)}{\|u\| q(u)} \\
& \begin{aligned}
I P \cap C & =\{x \in C \mid \rho(x) \geq 1\} \\
& =\left\{x \in C \left\lvert\, \frac{p(x)}{\|x\|^{2} q(x)} \geq 1\right.\right\} \\
& =\left\{x \in C \mid\|x\|^{2} q(x)-p(x) \leq 0\right\} .
\end{aligned}
\end{aligned}
$$

Thereom 1 (Berlow-B.-Meroni-Shankar, '21])
$I P$ is semialgebraic, i.e. a subset of \mathbb{R}^{d} defined by finite unions and intersections of polynomial inequalities.

Computing $\rho_{I P}>$ Example

$$
\left.\rho(x)\right|_{C}=\frac{p(x)}{\|x\|^{2} q(x)}, \quad I P \cap C=\left\{x \in C \mid\|x\|^{2} q(x)-p(x) \leq 0\right\}
$$

The algebraic boundary

The algebraic boundary $\partial_{a} I P$ of $I P$ is the Zariski closure of $\partial I P$,
i.e. the smallest set s.t. $\partial I P \subseteq \partial_{a} I P$ and there exist polynomials f_{1}, \ldots, f_{k} s.t. $\partial_{a} I P=\left\{x \in \mathbb{C}^{d} \mid f_{1}(x)=\cdots=f_{k}(x)=0\right\}$.

The algebraic boundary

The algebraic boundary $\partial_{a} I P$ of $I P$ is the Zariski closure of $\partial I P$,
i.e. the smallest set s.t. $\partial I P \subseteq \partial_{a} I P$ and there exist polynomials f_{1}, \ldots, f_{k} s.t. $\partial_{a} I P=\left\{x \in \mathbb{C}^{d} \mid f_{1}(x)=\cdots=f_{k}(x)=0\right\}$.

Proposition.

Let $H=\left\{C_{i} \mid i \in I\right\}$. Then

$$
\partial_{a} I P=\bigcup_{i \in I} \underbrace{\mathcal{V}\left(q_{i}-\frac{p_{i}}{\|x\|^{2}}\right)}_{\text {irreducible components }}
$$

The algebraic boundary

The algebraic boundary $\partial_{a} I P$ of $I P$ is the Zariski closure of $\partial I P$,
i.e. the smallest set s.t. $\partial I P \subseteq \partial_{a} I P$ and there exist polynomials f_{1}, \ldots, f_{k} s.t. $\partial_{a} I P=\left\{x \in \mathbb{C}^{d} \mid f_{1}(x)=\cdots=f_{k}(x)=0\right\}$.

Proposition.

Let $H=\left\{C_{i} \mid i \in I\right\}$. Then

$$
\partial_{a} I P=\bigcup_{i \in I} \underbrace{\mathcal{V}\left(q_{i}-\frac{p_{i}}{\|x\|^{2}}\right)}_{\text {irreducible components }}
$$

What are the degrees of the irreducible components?

The algebraic boundary >Degree Bound

Theorem 2 (Berlow-B.-Meroni-Shankar, '21)

$$
\operatorname{deg}\left(q(x)-\frac{p(x)}{\|x\|^{2}}\right) \leq \# \text { vertices of } P \cap x^{\perp} .
$$

The algebraic boundary >Degree Bound

Theorem 2 (Berlow-B.-Meroni-Shankar, '21)

$$
\operatorname{deg}\left(q(x)-\frac{p(x)}{\|x\|^{2}}\right) \leq \# \text { vertices of } P \cap x^{\perp}
$$

Corollary

The degrees of the irreducible components of $\partial_{a} I P$ are bounded by number of edges of $P-(\operatorname{dim}(P)-1))$.

The algebraic boundary >Degree Bound

Theorem 2 (Berlow-B.-Meroni-Shankar, '21)

$$
\operatorname{deg}\left(q(x)-\frac{p(x)}{\|x\|^{2}}\right) \leq \# \text { vertices of } P \cap x^{\perp}
$$

Corollary

The degrees of the irreducible components of $\partial_{a} I P$ are bounded by number of edges of $P-(\operatorname{dim}(P)-1))$.

Example:
$P_{1}=\operatorname{conv}\left(\left(\begin{array}{c}-1 \\ -1 \\ -1\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)\right)$
highest degree of irreducible component $=4$
number of edges of $\left.P_{1}-\left(\operatorname{dim}\left(P_{1}\right)-1\right)\right)=6-(3-1)=4$

The algebraic boundary >Degree Bound

Theorem 2 (Berlow-B.-Meroni-Shankar, '21)

$$
\operatorname{deg}\left(q(x)-\frac{p(x)}{\|x\|^{2}}\right) \leq \text { \# vertices of } P \cap x^{\perp} .
$$

Corollary

The degrees of the irreducible components of $\partial_{a} I P$ are bounded by number of edges of $P-(\operatorname{dim}(P)-1))$.

Example:
$P_{1}=\operatorname{conv}\left(\left(\begin{array}{c}-1 \\ -1 \\ -1\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)\right)$
highest degree of irreducible component $=4$
number of edges of $\left.P_{1}-\left(\operatorname{dim}\left(P_{1}\right)-1\right)\right)=6-(3-1)=4$
$P_{2}=[-1,1]^{3}$
highest degree of irreducible component $=3$
number of edges of $\left.P_{2}-\left(\operatorname{dim}\left(P_{2}\right)-1\right)\right)=12-(3-1)=10 \gg 3$

The algebraic boundary >Degree Bound

Corollary

If $P=-P$ then we can improve these bounds to

$$
\begin{array}{r}
\operatorname{deg}\left(q(x)-\frac{p(x)}{\|x\|^{2}}\right) \leq \frac{1}{2}\left(\# \text { vertices of } P \cap x^{\perp}\right) \\
\frac{1}{2}(\text { number of edges of } P-(\operatorname{dim}(P)-1)) .
\end{array}
$$

The algebraic boundary >Degree Bound

Corollary

If $P=-P$ then we can improve these bounds to

$$
\begin{array}{r}
\operatorname{deg}\left(q(x)-\frac{p(x)}{\|x\|^{2}}\right) \leq \frac{1}{2}\left(\# \text { vertices of } P \cap x^{\perp}\right) \\
\frac{1}{2}(\text { number of edges of } P-(\operatorname{dim}(P)-1)) .
\end{array}
$$

Example: $P_{2}=[-1,1]^{3}$
highest degree of irreducible component $=3$

$$
=\frac{1}{2}(\# \text { vertices of a hexagon })
$$

Case study: $[-1,1]^{d}$

Proposition

Let $P=[-1,1]^{d}$. Then the number of irreducible components of $I P$ of degree 1 is at least $2 d$.

dim	\# chambers of H	degree bound	$\operatorname{deg}=1$	2	3	4	5
2	4	1	4				
3	14	5	6	8			
4	104	14	8	32	64		
5	1882	38	10	80	320	1472	

