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Definition Radial functions and star bodies

A bounded set K is a star body if for every s ∈ K holds
[0, s] ⊆ K.

The radial function of K is

ρK : Rd → R
x 7→ max(λ ∈ R | λx ∈ K).

Given a radial function ρ, we associate

K = {x ∈ Rd | ρ(x) ≥ 1}.

Definition
Let P be a polytope. Then the intersection body IP of P is given
by the radial function (restricted to the sphere)

ρIP (u) = vold−1(P ∩ u⊥)

for u ∈ Sd−1.
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Radial functions and star bodies
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Definition Radial functions and star bodies

x1 + x2
x1x2

4
x1

− 4
x2

−x1 + x2
x1x2

{x | ρ(x) = − 4
x1
≥ 1}

{x | ρ(x) = 4
x2
≥ 1}
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History Busemann-Petty problem

Conjecture [Busemann, Petty (1956)]
Let K,T ⊆ Rd be symmetric convex bodies such that for any
hyperplane H through the origin holds

vold−1(K ∩H) ≤ vold−1(T ∩H).

Then also
vold(K) ≤ vold(T ).

Lutwak (1988) The Busemann–Petty problem is true in dimension
d ⇐⇒ every symmetric convex body of dimension d is an
intersection body.

Gardner (1994), Koldobsky (1998), Zhang (1999),
Gardner-Kodlobsky-Schlumprecht (1999) The conjecture is true if
and only if d ≤ 4.
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History Polytopes

• P ⊆ R2 centrally symmetric polygon, centered at the origin
=⇒ IP = 2ϕ90(P ) (ϕ90 = rotation by 90 degrees)

• K ⊆ Rd is a full-dimensional, convex, centered at the origin
=⇒ IK is full-dimensional, convex, centered at the origin

• K ⊆ Rd star body, d ≥ 3
=⇒ IK is not a polytope
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Motivation and Results

Let P ⊆ Rd be a polytope with intersection body IP .

Goals
• Algorithm to compute the radial function ρIP explicitly
• Compute the equations of the boundary of IP .

Thereom 1 [Berlow, B., Meroni, Shankar (2021)]
IP is semialgebraic, i.e. a subset of Rd defined by finite unions
and intersections of polynomial inequalities.

Theorem 2 [Berlow, B., Meroni, Shankar (2021)]
The degree of the irreducible components of the algebraic
boundary of IP is bounded by

number of edges of P − (dim(P )− 1)).
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Computing Intersection Bodies 3-cube

Let P = [−1, 1]3, x ∈ R3. Then Q = P ∩ x⊥ can have different
shapes.

vertices of Q ←→ edges of P

First question:
Which subsets C ⊆ R3 have the following property:
∀x ∈ C: x⊥ intersects a fixed set of edges of P .

General idea: Write the volume of P ∩ x⊥ in terms of x ∈ R3.
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Computing ρIP Hyperplane Arrangement H

H = {v⊥ | v is a vertex of P and v 6= 0} hyperplane arrangement.

C max chamber of H
⇒ ∀x ∈ C : x⊥ intersects P in fixed set of edges

The polyhedral fan induced by H is the normal fan of the zonotope

Z(P ) =
∑

v vertex of P

[−v, v]

”Pieces” of ∂IP ←→ open chambers of H
←→ vertices of Z(P )
←→ facets of Z(P )◦

IP P H

Z(P ) Z(P )◦
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Computing ρIP Z(P ) can have many P s!

left: IP1 for P1 = [−1, 1]3

right: IP2 for P2 = conv
((
−1
−1
−1

)
,
(−1

1
1

)
,
( 1
−1
1

)
,
( 1

1
−1

))
center: Z(P1)◦ = Z(P2)◦

⇒ The zonotope Z(P ) does not determine the polytope P or the
intersection body IP !

�MathRepo
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How to compute ρIP

C ∈ H
u ∈ C ∩ Sd−1

u

v2

v1 = λa+ (1− λ)b

a

b

= 〈b,u〉a−〈a,u〉b
〈b−a,u〉

vol2(conv(0, v1, v2)) = 3 vol3(conv(0, v1, v2, u)) = 3
3! det

( v1
v2
u

)
= p∆(u)
q∆(u)

ρIP (u) =
∑

∆∈T (P∩u⊥)

p∆(u)
q∆(u) = p(u)

q(u) for u ∈ S2 ∩ C
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How to compute ρIP

ρIP (u) =
∑

∆∈T (P∩u⊥)

p∆(u)
q∆(u) = p(u)

q(u) for u ∈ S2 ∩ C

IP ∩ C = {x ∈ C | ρ(x) ≥ 1}

= {x ∈ C | p(x)
‖x‖2q(x) ≥ 1}

= {x ∈ C | ‖x‖2q(x)− p(x) ≤ 0}.

H has finitely many chambers. Thus,

Thereom 1 [Berlow, B., Meroni, Shankar (2021)]
IP is semialgebraic, i.e. a subset of Rd defined by finite unions
and intersections of polynomial inequalities.
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How to compute ρIP Example

ρ(x)|C = p(x)
‖x‖2q(x) , IP ∩ C = {x ∈ C | ‖x‖2q(x)− p(x) ≤ 0}

x1 + x2
x1x2

4
x1

− 4
x2

−x1 + x2
x1x2

− 4
x1

4
x2
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The algebraic boundary

The algebraic boundary ∂aIP of IP is the Zariski closure of ∂IP ,

i.e. the smallest set s.t. ∂IP ⊆ ∂aIP and there exist polynomials
f1, . . . , fk s.t. ∂aIP = {x ∈ Cd | f1(x) = · · · = fk(x) = 0}.

Proposition.
The polynomial p(x) is divisible by ‖x‖2 = x2

1 + · · ·+ x2
d.

Let H = {Ci | i ∈ I} and f(x) =
∏
i∈I

(
qi −

pi

‖x‖2
)

. Then

∂aIP = {x ∈ Cd | f(x) = 0}

=
⋃
i∈I

V
(
qi −

pi

‖x‖2
)

︸ ︷︷ ︸
irreducible components

What are the degrees of the irreducible components?

Intersection Bodies of Polytopes Marie-Charlotte Brandenburg 16



The algebraic boundary

The algebraic boundary ∂aIP of IP is the Zariski closure of ∂IP ,

i.e. the smallest set s.t. ∂IP ⊆ ∂aIP and there exist polynomials
f1, . . . , fk s.t. ∂aIP = {x ∈ Cd | f1(x) = · · · = fk(x) = 0}.

Proposition.
The polynomial p(x) is divisible by ‖x‖2 = x2

1 + · · ·+ x2
d.

Let H = {Ci | i ∈ I} and f(x) =
∏
i∈I

(
qi −

pi

‖x‖2
)

. Then

∂aIP = {x ∈ Cd | f(x) = 0}

=
⋃
i∈I

V
(
qi −

pi

‖x‖2
)

︸ ︷︷ ︸
irreducible components

What are the degrees of the irreducible components?

Intersection Bodies of Polytopes Marie-Charlotte Brandenburg 16



The algebraic boundary

The algebraic boundary ∂aIP of IP is the Zariski closure of ∂IP ,

i.e. the smallest set s.t. ∂IP ⊆ ∂aIP and there exist polynomials
f1, . . . , fk s.t. ∂aIP = {x ∈ Cd | f1(x) = · · · = fk(x) = 0}.

Proposition.
The polynomial p(x) is divisible by ‖x‖2 = x2

1 + · · ·+ x2
d.

Let H = {Ci | i ∈ I} and f(x) =
∏
i∈I

(
qi −

pi

‖x‖2
)

. Then

∂aIP = {x ∈ Cd | f(x) = 0}

=
⋃
i∈I

V
(
qi −

pi

‖x‖2
)

︸ ︷︷ ︸
irreducible components

What are the degrees of the irreducible components?

Intersection Bodies of Polytopes Marie-Charlotte Brandenburg 16



The algebraic boundary

The algebraic boundary ∂aIP of IP is the Zariski closure of ∂IP ,

i.e. the smallest set s.t. ∂IP ⊆ ∂aIP and there exist polynomials
f1, . . . , fk s.t. ∂aIP = {x ∈ Cd | f1(x) = · · · = fk(x) = 0}.

Proposition.
The polynomial p(x) is divisible by ‖x‖2 = x2

1 + · · ·+ x2
d.

Let H = {Ci | i ∈ I} and f(x) =
∏
i∈I

(
qi −

pi

‖x‖2
)

. Then

∂aIP = {x ∈ Cd | f(x) = 0}

=
⋃
i∈I

V
(
qi −

pi

‖x‖2
)

︸ ︷︷ ︸
irreducible components

What are the degrees of the irreducible components?

Intersection Bodies of Polytopes Marie-Charlotte Brandenburg 16



The algebraic boundary

The algebraic boundary ∂aIP of IP is the Zariski closure of ∂IP ,

i.e. the smallest set s.t. ∂IP ⊆ ∂aIP and there exist polynomials
f1, . . . , fk s.t. ∂aIP = {x ∈ Cd | f1(x) = · · · = fk(x) = 0}.

Proposition.
The polynomial p(x) is divisible by ‖x‖2 = x2

1 + · · ·+ x2
d.

Let H = {Ci | i ∈ I} and f(x) =
∏
i∈I

(
qi −

pi

‖x‖2
)

. Then

∂aIP = {x ∈ Cd | f(x) = 0}

=
⋃
i∈I

V
(
qi −

pi

‖x‖2
)

︸ ︷︷ ︸
irreducible components

What are the degrees of the irreducible components?
Intersection Bodies of Polytopes Marie-Charlotte Brandenburg 16



The algebraic boundary Degree Bound

Theorem 2 [Berlow, B., Meroni, Shankar (2021)]

deg
(
q(x)− p(x)

‖x‖2

)
≤ # vertices of P ∩ x⊥.

Corollary
The degrees of the irreducible components of ∂aIP are bounded by

number of edges of P − (dim(P )− 1)).

Example:
P1 = conv

((
−1
−1
−1

)
,
(−1

1
1

)
,
( 1
−1
1

)
,
( 1

1
−1

))
highest degree of irreducible component = 4
number of edges of P1 − (dim(P1)− 1)) = 6− (3− 1) = 4

P2 = [−1, 1]3
highest degree of irreducible component = 3
number of edges of P2− (dim(P2)− 1)) = 12− (3− 1) = 10 >> 3
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The algebraic boundary Degree Bound

Corollary
If P is centrally symmetric and centered at the origin, then we can
improve these bounds to

deg
(
q(x)− p(x)

‖x‖2

)
≤ 1

2(# vertices of P ∩ x⊥)
1
2 (number of edges of P − (dim(P )− 1)) .

Example: P2 = [−1, 1]3

highest degree of irreducible component = 3
= 1

2 (# vertices of a hexagon)
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Case study: [−1, 1]d

Proposition [Berlow, B., Meroni, Shankar (2021)]
Let P = [−1, 1]d. Then the number of irreducible components of
IP of degree 1 is at least 2d.

# chambers degree
dim of H bound deg = 1 2 3 4 5
2 4 1 4
3 14 5 6 8
4 104 14 8 32 64
5 1882 38 10 80 320 1472

Intersection Bodies of Polytopes Marie-Charlotte Brandenburg 19



Thank you!
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