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Definition ) Radial functions and star bodies

A bounded set K is a star body if for every s € K holds
[0,s] C K.
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Definition ) Radial functions and star bodies

A bounded set K is a star body if for every s € K holds
[0,s] C K. The radial function of K is

pK:Rd—HR
r—max(A € R| Az € K).
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Definition ) Radial functions and star bodies

A bounded set K is a star body if for every s € K holds
[0,s] C K. The radial function of K is

pK:]Rd—HR
r—max(A € R| Az € K).

Given a radial function p, we associate

K ={zeR?| p(z) > 1}.
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Definition ) Radial functions and star bodies

A bounded set K is a star body if for every s € K holds
[0,s] C K. The radial function of K is

PK RY R
r—max(A € R| Az € K).
Given a radial function p, we associate

K ={zeR?| p(z) > 1}.

Definition
Let P be a polytope. Then the intersection body I P of P is given
by the radial function (restricted to the sphere)

prp(u) = volg_1 (P Nu't)

for u € S9-1.
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Radial functions and star bodies
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Definition ) Radial functions and star bodies
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History ) Busemann-Petty problem

Conjecture [Busemann, Petty (1956)]

Let K, T C R% be symmetric convex bodies such that for any
hyperplane H through the origin holds

volg_1(K N H) < VOld,l(T N H)

Then also
VOld(K) < VOld(T).
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History ) Busemann-Petty problem

Conjecture [Busemann, Petty (1956)]

Let K, T C R% be symmetric convex bodies such that for any
hyperplane H through the origin holds

volg_1(K N H) < VOld,l(T N H)

Then also
VOld(K) < VOld(T).

Lutwak (1988) The Busemann—Petty problem is true in dimension
d <= every symmetric convex body of dimension d is an
intersection body.
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History ) Busemann-Petty problem

Conjecture [Busemann, Petty (1956)]
Let K, T C R% be symmetric convex bodies such that for any
hyperplane H through the origin holds
volg_1(K N H) < VOld,l(T N H)
Then also

VOld(K) < VOld(T).

Lutwak (1988) The Busemann—Petty problem is true in dimension
d <= every symmetric convex body of dimension d is an
intersection body.

Gardner (1994), Koldobsky (1998), Zhang (1999),
Gardner-Kodlobsky-Schlumprecht (1999) The conjecture is true if
and only if d < 4.
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History ) Polytopes

e P C R? centrally symmetric polygon, centered at the origin
= 1P = 2pgy(P) (9o = rotation by 90 degrees)

e K C R%is a full-dimensional, convex, centered at the origin
= IK is full-dimensional, convex, centered at the origin

e K C R? star body, d > 3
= IK is not a polytope
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Motivation and Results

Let P C R be a polytope with intersection body IP.

Goals
® Algorithm to compute the radial function p;p explicitly

e Compute the equations of the boundary of IP.
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Motivation and Results

Let P C R be a polytope with intersection body IP.

Goals
® Algorithm to compute the radial function p;p explicitly
e Compute the equations of the boundary of IP.

Thereom 1 [Berlow, B., Meroni, Shankar (2021)]

IP is semialgebraic, i.e. a subset of R? defined by finite unions
and intersections of polynomial inequalities.
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Motivation and Results

Let P C R be a polytope with intersection body IP.

Goals
® Algorithm to compute the radial function p;p explicitly
e Compute the equations of the boundary of IP.

Thereom 1 [Berlow, B., Meroni, Shankar (2021)]

IP is semialgebraic, i.e. a subset of R? defined by finite unions
and intersections of polynomial inequalities.

Theorem 2 [Berlow, B., Meroni, Shankar (2021)]

The degree of the irreducible components of the algebraic
boundary of IP is bounded by

number of edges of P — (dim(P) — 1)).
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Computing Intersection Bodies ) 3-cube

Let P=[-1,13, x € R3. Then Q@ = PNz can have different
shapes.

Intersection Bodies of Polytopes | Marie-Charlotte Brandenburg



Computing Intersection Bodies ) 3-cube

Let P=[-1,13, x € R3. Then Q@ = PNz can have different
shapes.

vertices of () <+— edges of P
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Computing Intersection Bodies ) 3-cube

Let P=[-1,13, x € R3. Then Q@ = PNz can have different
shapes.
vertices of () <+— edges of P

First question:
Which subsets C' C R? have the following property:
Vz € C: z* intersects a fixed set of edges of P.
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Computing Intersection Bodies ) 3-cube

f' 4“

Let P=[-1,13, x € R3. Then Q@ = PNz can have different
shapes.

vertices of () <+— edges of P

First question:
Which subsets C' C R? have the following property:
Vz € C: z* intersects a fixed set of edges of P.
General idea: Write the volume of P Nzt in terms of 2 € R3.
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Computing p;p ) Hyperplane Arrangement H

H = {v* | v is a vertex of P and v # 0} hyperplane arrangement.

1P P H
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Computing p;p ) Hyperplane Arrangement H

H = {v* | v is a vertex of P and v # 0} hyperplane arrangement.
C max chamber of H

= Vz € C : x intersects P in fixed set of edges

1P P H
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Computing p;p ) Hyperplane Arrangement H

H = {v* | v is a vertex of P and v # 0} hyperplane arrangement.
C max chamber of H

= Vz € C : x intersects P in fixed set of edges

"Pieces” of 0IP +— open chambers of H

1P P H

X
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Computing p;p ) Hyperplane Arrangement H

H = {v* | v is a vertex of P and v # 0} hyperplane arrangement.
C max chamber of H

= Vz € C : x intersects P in fixed set of edges
The polyhedral fan induced by H is the normal fan of the zonotope

Z(P)= > [-vn]

v vertex of P

"Pieces” of 0IP +— open chambers of H

1P P H

X
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Computing p;p ) Hyperplane Arrangement H

H = {v* | v is a vertex of P and v # 0} hyperplane arrangement.
C max chamber of H

= Vz € C : x intersects P in fixed set of edges
The polyhedral fan induced by H is the normal fan of the zonotope

Z(P)= > [-vn]

v vertex of P

"Pieces” of 0IP +— open chambers of H
< vertices of Z(P)

1P P H

X
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Computing p;p ) Hyperplane Arrangement H

H = {v* | v is a vertex of P and v # 0} hyperplane arrangement.
C max chamber of H

= Vz € C : x intersects P in fixed set of edges
The polyhedral fan induced by H is the normal fan of the zonotope

Z(P)= > [-vn]

v vertex of P

"Pieces” of 0IP +— open chambers of H
< vertices of Z(P)
+— facets of Z(P)°

P P H Z(P)°

X
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Computing p;p) Z(P) can have many Ps!

KR

left: I[P for P, =

right: 1Py for P, = conv <<j) (_%1) , (—11) , (_%1)>
center:  Z(P)° = Z(P»)°

= The zonotope Z(P) does not determine the polytope P or the
intersection body I P!
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https://mathrepo.mis.mpg.de/intersection-bodies/case-study.html

Computing p;p) Z(P) can have many Ps!

KR

left: I[P for P, =

right: 1Py for P, = conv ((j) (_%1) , (—11) , (_%1)>
center:  Z(P)° = Z(P»)°

= The zonotope Z(P) does not determine the polytope P or the
intersection body I P!
M MathRepo
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How to compute p;p

CeH
uwe Cnsil
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How to compute p;p

CeH
uwe Cnsil

vola(conv (0, vy, v2))
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How to compute p;p

CeH

vola(conv (0, vy, v2))
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How to compute p;p

CeH

vola(conv (0, vy, v2))
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How to compute p;p

CeH <'
weCn st '*

vola(conv (0, vy, v2)) = 3vols(conv (0, vy, va,u))
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How to compute p;p

CeH

v a
weCngit '*

(buya—{a,u)b
(b—a,u)
‘ |
vola(conv (0, vy, v2)) = 3 volg(conv(0, vy, va, u)) = 3 det (}u)é) = palu
3! u qa(u
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How to compute p;p

CeH

weCngit l

3
vola(conv (0, vy, v2)) = 3volg(conv(0, vy, ve, u)) = — det (}%) =

prp(u) =
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How to compute p;p

prp(u) =

Intersection Bodies of Polytopes
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pa(v) :MforueSQHC
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How to compute p;p

prp(u) = Z pa(u) = p(u) foru e S NC

AeT (Pnut)

ga(u)  q(u)

IPNC={zeC|p(z)>1}
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How to compute p;p

o palw) _pl) .
prp( )—AGT%;%L) RO weS:ncC
IPNC={zeC|p(x)>1}
L p(2)
=o€ Cl gy 2 U
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How to compute p;p

e pa(w) _p(w) o o
prp(u) AET%;W) ) g ruesine

IPNC={zeC|p(x)>1}
i p(z)
=l =Y
={z € C||z|*¢(z) — p(x) < 0}.

H has finitely many chambers. Thus,
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How to compute p;p

. pa(w) _p(w) o o
prp( )—AET%;W) ) g ruesine

IPNC={zeC|p(z)>1}

i p(z)
B P

= {z e C||z]?q(x) - p(x) < 0}.
H has finitely many chambers. Thus,
Thereom 1 [Berlow, B., Meroni, Shankar (2021)]

IP is semialgebraic, i.e. a subset of R? defined by finite unions
and intersections of polynomial inequalities.
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How to compute p;p ) Example

p(@)|o = 0, IPNC = {z e C||z|q(z) - p(z) < 0}

llz][%q(z)°
4
X2
T+ 22
12
4
X1
IP 1
T+ T2
T1T2
4
2
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The algebraic boundary

The algebraic boundary 9,1 P of IP is the Zariski closure of 1P,

i.e. the smallest set s.t. I P C 9,1 P and there exist polynomials
Fioeeo fisit. 9P = {z € €| fifa) = --- = fulz) = O},
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The algebraic boundary

The algebraic boundary 9,1 P of IP is the Zariski closure of 1P,

i.e. the smallest set s.t. I P C 9,1 P and there exist polynomials
Fioeeo fisit. 9P = {z € €| fifa) = --- = fulz) = O},

Proposition.

The polynomial p(z) is divisible by ||z||? = 2% + - - - + 2.
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The algebraic boundary

The algebraic boundary 9,1 P of IP is the Zariski closure of 1P,

i.e. the smallest set s.t. I P C 9,1 P and there exist polynomials
frroo fest QIP ={z €Cl| fi(w) = -+ = fu(z) = O}.

Proposition.

The polynomial p(z) is divisible by ||z||? = 2% + - - - + 2.

Let H={C;|ie€ I} and f(;v)zH(qi— bi ) Then

il (el

d,JP ={x e C?| f(x) =0}
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The algebraic boundary

The algebraic boundary 9,1 P of IP is the Zariski closure of 1P,

i.e. the smallest set s.t. I P C 9,1 P and there exist polynomials
frroo fest QIP ={z €Cl| fi(w) = -+ = fu(z) = O}.

Proposition.

The polynomial p(z) is divisible by ||z||? = 2% + - - - + 2.

Let H={C;|ie€ I} and f(;v)zH(qi— bi ) Then

il (el

d,JP ={x e C?| f(x) =0}

Di
U v (a-)
et ]2

irreducible components
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The algebraic boundary

The algebraic boundary 9,1 P of IP is the Zariski closure of 1P,

i.e. the smallest set s.t. I P C 9,1 P and there exist polynomials
frroo fest QIP ={z €Cl| fi(w) = -+ = fu(z) = O}.

Proposition.

The polynomial p(z) is divisible by ||z||? = 2% + - - - + 2.

Let H={C;|ie€ I} and f(;v)zH(qi— bi ) Then

il (el

d,JP ={x e C?| f(x) =0}

Di
U V(e )
et ]2

irreducible components

What are the degrees of the irreducible components?
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The algebraic boundary ) Degree Bound

Theorem 2 [Berlow, B., Meroni, Shankar (2021)]

deg (q(x) = %) < # vertices of PN zt.
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The algebraic boundary ) Degree Bound

Theorem 2 [Berlow, B., Meroni, Shankar (2021)]

deg (q(:c) = %) < # vertices of PN zt.

Corollary

The degrees of the irreducible components of 0,1 P are bounded by
number of edges of P — (dim(P) — 1)).
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The algebraic boundary ) Degree Bound

Theorem 2 [Berlow, B., Meroni, Shankar (2021)]
deg (q(:c) = %) < # vertices of PN zt.

Corollary

The degrees of the irreducible components of 0,1 P are bounded by
number of edges of P — (dim(P) — 1)).

Example:

-1 -1 1 1
= ((4)(7)-(2)-(1))
highest degree of irreducible component = 4
number of edges of P, — (dim(P;) — 1)) =6—-(3—1) =4
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The algebraic boundary ) Degree Bound

Theorem 2 [Berlow, B., Meroni, Shankar (2021)]
deg (q(:c) = %) < # vertices of PN zt.

Corollary

The degrees of the irreducible components of 0,1 P are bounded by
number of edges of P — (dim(P) — 1)).

Example:

=eon((4).(7).(2).(1)

highest degree of irreducible component = 4
number of edges of P, — (dim(P;) — 1)) =6—-(3—1) =4

Py =[-1,1]°
highest degree of irreducible component = 3
number of edges of P — (dim(P)—1)) =12—(3—-1) =10 >> 3
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The algebraic boundary ) Degree Bound

Corollary

If P is centrally symmetric and centered at the origin, then we can
improve these bounds to

deg (q(a:) — %?Z) < L(# vertices of PN a™)

3 (number of edges of P — (dim(P) — 1)).
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The algebraic boundary ) Degree Bound

Corollary

If P is centrally symmetric and centered at the origin, then we can
improve these bounds to

deg (q(a:) — %?Z) < L(# vertices of PN a™)

3 (number of edges of P — (dim(P) — 1)).

Example: P = [—1,1]3

highest degree of irreducible component = 3
= 1 (# vertices of a hexagon)
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Case study: [—1, 1]

Proposition [Berlow, B., Meroni, Shankar (2021)]

Let P = [—~1,1]%. Then the number of irreducible components of
IP of degree 1 is at least 2d.

# chambers degree
dim of H bound | deg=1 2 3 4 5
2 4 1 4
3 14 5 6 8
4 104 14 8 32 64
5 1882 38 10 80 320 1472
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