Intersection Bodies of Polytopes

Marie-Charlotte Brandenburg

Max-Planck-Institut für Mathematik in den Naturwissenschaften

Colloqium Facets of Complexity Berlin 14. February 2022

MAX-PLANCK-GESELLSCHAFT

Katalin Berlow UC Berkeley

Chiara Meroni MPI MiS

Isabelle Shankar University of Illinois

3 Computing Intersection Bodies

A bounded set K is a star body if for every $s \in K$ holds $[0,s] \subseteq K.$

A bounded set K is a star body if for every $s \in K$ holds $[0,s] \subseteq K.$ The radial function of K is

 $\rho_K : \mathbb{R}^d \to \mathbb{R}$ $x \mapsto \max(\lambda \in \mathbb{R} \mid \lambda x \in K).$

A bounded set K is a star body if for every $s \in K$ holds $[0,s] \subseteq K.$ The radial function of K is

$$\rho_K : \mathbb{R}^d \to \mathbb{R}$$
$$x \mapsto \max(\lambda \in \mathbb{R} \mid \lambda x \in K).$$

Given a radial function $\rho,$ we associate

$$K = \{ x \in \mathbb{R}^d \mid \rho(x) \ge 1 \}.$$

A bounded set K is a star body if for every $s \in K$ holds $[0,s] \subseteq K.$ The radial function of K is

$$\rho_K : \mathbb{R}^d \to \mathbb{R}$$
$$x \mapsto \max(\lambda \in \mathbb{R} \mid \lambda x \in K).$$

Given a radial function $\rho,$ we associate

$$K = \{ x \in \mathbb{R}^d \mid \rho(x) \ge 1 \}.$$

Definition

Let P be a polytope. Then the *intersection body* IP of P is given by the radial function (restricted to the sphere)

$$\rho_{IP}(u) = \operatorname{vol}_{d-1}(P \cap u^{\perp})$$

for $u \in S^{d-1}$.

Intersection Bodies of Polytopes

Radial functions and star bodies

Conjecture [Busemann, Petty (1956)]

Let $K,T\subseteq \mathbb{R}^d$ be symmetric convex bodies such that for any hyperplane H through the origin holds

$$\operatorname{vol}_{d-1}(K \cap H) \le \operatorname{vol}_{d-1}(T \cap H).$$

Then also

 $\operatorname{vol}_d(K) \le \operatorname{vol}_d(T).$

Conjecture [Busemann, Petty (1956)]

Let $K,T\subseteq \mathbb{R}^d$ be symmetric convex bodies such that for any hyperplane H through the origin holds

$$\operatorname{vol}_{d-1}(K \cap H) \le \operatorname{vol}_{d-1}(T \cap H).$$

Then also

$$\operatorname{vol}_d(K) \le \operatorname{vol}_d(T).$$

Lutwak (1988) The Busemann–Petty problem is true in dimension $d \iff$ every symmetric convex body of dimension d is an intersection body.

Conjecture [Busemann, Petty (1956)]

Let $K,T\subseteq \mathbb{R}^d$ be symmetric convex bodies such that for any hyperplane H through the origin holds

$$\operatorname{vol}_{d-1}(K \cap H) \le \operatorname{vol}_{d-1}(T \cap H).$$

Then also

$$\operatorname{vol}_d(K) \le \operatorname{vol}_d(T).$$

Lutwak (1988) The Busemann–Petty problem is true in dimension $d \iff$ every symmetric convex body of dimension d is an intersection body.

Gardner (1994), Koldobsky (1998), Zhang (1999), Gardner-Kodlobsky-Schlumprecht (1999) The conjecture is true if and only if $d \le 4$.

- $P \subseteq \mathbb{R}^2$ centrally symmetric polygon, centered at the origin $\implies IP = 2\varphi_{90}(P) \ (\varphi_{90} = \text{rotation by } 90 \text{ degrees})$
- $K \subseteq \mathbb{R}^d$ is a full-dimensional, convex, centered at the origin $\implies IK$ is full-dimensional, convex, centered at the origin
- $K \subseteq \mathbb{R}^d$ star body, $d \ge 3$ $\implies IK$ is not a polytope

Let $P \subseteq \mathbb{R}^d$ be a polytope with intersection body IP.

Goals

- Algorithm to compute the radial function ρ_{IP} explicitly
- Compute the equations of the boundary of *IP*.

Let $P \subseteq \mathbb{R}^d$ be a polytope with intersection body IP.

Goals

- Algorithm to compute the radial function ρ_{IP} explicitly
- Compute the equations of the boundary of *IP*.

Thereom 1 [Berlow, B., Meroni, Shankar (2021)]

IP is semialgebraic, i.e. a subset of \mathbb{R}^d defined by finite unions and intersections of polynomial inequalities.

Let $P \subseteq \mathbb{R}^d$ be a polytope with intersection body IP.

Goals

- Algorithm to compute the radial function ho_{IP} explicitly
- Compute the equations of the boundary of *IP*.

Thereom 1 [Berlow, B., Meroni, Shankar (2021)]

IP is semialgebraic, i.e. a subset of \mathbb{R}^d defined by finite unions and intersections of polynomial inequalities.

Theorem 2 [Berlow, B., Meroni, Shankar (2021)]

The degree of the irreducible components of the algebraic boundary of ${\cal IP}$ is bounded by

number of edges of
$$P - (\dim(P) - 1))$$
.

Computing Intersection Bodies 3-cube

Let $P = [-1, 1]^3$, $x \in \mathbb{R}^3$. Then $Q = P \cap x^{\perp}$ can have different shapes.

Computing Intersection Bodies > 3-cube

Let $P = [-1, 1]^3$, $x \in \mathbb{R}^3$. Then $Q = P \cap x^{\perp}$ can have different shapes.

vertices of
$$Q \longleftrightarrow$$
 edges of P

Computing Intersection Bodies > 3-cube

Let $P = [-1, 1]^3$, $x \in \mathbb{R}^3$. Then $Q = P \cap x^{\perp}$ can have different shapes.

vertices of
$$Q\longleftrightarrow$$
 edges of P

First question:

Which subsets $C \subseteq \mathbb{R}^3$ have the following property: $\forall x \in C: x^{\perp}$ intersects a fixed set of edges of P.

Computing Intersection Bodies > 3-cube

Let $P = [-1, 1]^3$, $x \in \mathbb{R}^3$. Then $Q = P \cap x^{\perp}$ can have different shapes.

vertices of
$$Q \longleftrightarrow \operatorname{\mathsf{edges}}$$
 of P

First question:

Which subsets $C \subseteq \mathbb{R}^3$ have the following property: $\forall x \in C: x^{\perp}$ intersects a fixed set of edges of P. General idea: Write the volume of $P \cap x^{\perp}$ in terms of $x \in \mathbb{R}^3$.

 $H = \{v^{\perp} \mid v \text{ is a vertex of } P \text{ and } v \neq 0\}$ hyperplane arrangement.

 $H = \{v^{\perp} \mid v \text{ is a vertex of } P \text{ and } v \neq 0\}$ hyperplane arrangement. C max chamber of H $\Rightarrow \forall x \in C : x^{\perp} \text{ intersects } P \text{ in fixed set of edges}$

$$\begin{split} H &= \{v^{\perp} \mid v \text{ is a vertex of } P \text{ and } v \neq 0\} \text{ hyperplane arrangement.} \\ C \text{ max chamber of } H \\ &\Rightarrow \forall x \in C : x^{\perp} \text{ intersects } P \text{ in fixed set of edges} \end{split}$$

"Pieces" of $\partial IP \longleftrightarrow$ open chambers of H

 $H = \{v^{\perp} \mid v \text{ is a vertex of } P \text{ and } v \neq 0\}$ hyperplane arrangement. C max chamber of H

 $\Rightarrow \forall x \in C : x^{\perp}$ intersects P in fixed set of edges The polyhedral fan induced by H is the normal fan of the zonotope

$$Z(P) = \sum_{v \text{ vertex of } P} [-v, v]$$

"Pieces" of $\partial IP \longleftrightarrow$ open chambers of H

 $H = \{v^{\perp} \mid v \text{ is a vertex of } P \text{ and } v \neq 0\}$ hyperplane arrangement. C max chamber of H

 $\Rightarrow \forall x \in C : x^{\perp}$ intersects P in fixed set of edges The polyhedral fan induced by H is the normal fan of the zonotope

$$Z(P) = \sum_{v \text{ vertex of } P} [-v, v]$$

"Pieces" of
$$\partial IP \longleftrightarrow$$
 open chambers of $H \longleftrightarrow$ vertices of $Z(P)$

 $H = \{v^{\perp} \mid v \text{ is a vertex of } P \text{ and } v \neq 0\}$ hyperplane arrangement. C max chamber of H

 $\Rightarrow \forall x \in C : x^{\perp}$ intersects P in fixed set of edges The polyhedral fan induced by H is the normal fan of the zonotope

$$Z(P) = \sum_{v \text{ vertex of } P} [-v, v]$$

Computing ρ_{IP} > Z(P) can have many Ps!

left: IP_1 for $P_1 = [-1, 1]^3$ right: IP_2 for $P_2 = \operatorname{conv}\left(\begin{pmatrix} -1\\ -1\\ -1 \end{pmatrix}, \begin{pmatrix} -1\\ 1\\ 1 \end{pmatrix}, \begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix}, \begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix}\right)$ center: $Z(P_1)^\circ = Z(P_2)^\circ$

 \Rightarrow The zonotope Z(P) does not determine the polytope P or the intersection body IP!

Computing ρ_{IP} > Z(P) can have many Ps!

left: IP_1 for $P_1 = [-1, 1]^3$ right: IP_2 for $P_2 = \operatorname{conv}\left(\begin{pmatrix} -1\\ -1\\ -1 \end{pmatrix}, \begin{pmatrix} -1\\ 1\\ 1 \end{pmatrix}, \begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix}, \begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix}\right)$ center: $Z(P_1)^\circ = Z(P_2)^\circ$

 \Rightarrow The zonotope Z(P) does not determine the polytope P or the intersection body IP!

MathRepo

 $\operatorname{vol}_2(\operatorname{conv}(0, v_1, v_2))$

 $\operatorname{vol}_2(\operatorname{conv}(0, v_1, v_2))$

 $\operatorname{vol}_2(\operatorname{conv}(0, v_1, v_2))$

 $vol_2(conv(0, v_1, v_2)) = 3 vol_3(conv(0, v_1, v_2, u))$

Intersection Bodies of Polytopes

Marie-Charlotte Brandenburg

$$\rho_{IP}(u) = \sum_{\Delta \in \mathcal{T}(P \cap u^{\perp})} \frac{p_{\Delta}(u)}{q_{\Delta}(u)} = \frac{p(u)}{q(u)} \text{ for } u \in S^2 \cap C$$

$$\rho_{IP}(u) = \sum_{\Delta \in \mathcal{T}(P \cap u^{\perp})} \frac{p_{\Delta}(u)}{q_{\Delta}(u)} = \frac{p(u)}{q(u)} \text{ for } u \in S^2 \cap C$$
$$IP \cap C = \{x \in C \mid \rho(x) \ge 1\}$$

$$\rho_{IP}(u) = \sum_{\Delta \in \mathcal{T}(P \cap u^{\perp})} \frac{p_{\Delta}(u)}{q_{\Delta}(u)} = \frac{p(u)}{q(u)} \text{ for } u \in S^2 \cap C$$
$$IP \cap C = \{x \in C \mid \rho(x) \ge 1\}$$
$$= \{x \in C \mid \frac{p(x)}{\|x\|^2 q(x)} \ge 1\}$$

$$\rho_{IP}(u) = \sum_{\Delta \in \mathcal{T}(P \cap u^{\perp})} \frac{p_{\Delta}(u)}{q_{\Delta}(u)} = \frac{p(u)}{q(u)} \text{ for } u \in S^2 \cap C$$
$$IP \cap C = \{x \in C \mid \rho(x) \ge 1\}$$
$$= \{x \in C \mid \frac{p(x)}{\|x\|^2 q(x)} \ge 1\}$$
$$= \{x \in C \mid \|x\|^2 q(x) - p(x) \le 0\}.$$

 ${\boldsymbol{H}}$ has finitely many chambers. Thus,

$$\rho_{IP}(u) = \sum_{\Delta \in \mathcal{T}(P \cap u^{\perp})} \frac{p_{\Delta}(u)}{q_{\Delta}(u)} = \frac{p(u)}{q(u)} \text{ for } u \in S^2 \cap C$$
$$IP \cap C = \{x \in C \mid \rho(x) \ge 1\}$$
$$= \{x \in C \mid \frac{p(x)}{\|x\|^2 q(x)} \ge 1\}$$
$$= \{x \in C \mid \|x\|^2 q(x) - p(x) \le 0\}.$$

H has finitely many chambers. Thus,

Thereom 1 [Berlow, B., Meroni, Shankar (2021)]

IP is semialgebraic, i.e. a subset of \mathbb{R}^d defined by finite unions and intersections of polynomial inequalities.

How to compute ρ_{IP} > Example

Intersection Bodies of Polytopes

Marie-Charlotte Brandenburg

The algebraic boundary $\partial_a IP$ of IP is the Zariski closure of ∂IP , i.e. the smallest set s.t. $\partial IP \subseteq \partial_a IP$ and there exist polynomials f_1, \ldots, f_k s.t. $\partial_a IP = \{x \in \mathbb{C}^d \mid f_1(x) = \cdots = f_k(x) = 0\}.$

The algebraic boundary $\partial_a IP$ of IP is the Zariski closure of ∂IP ,

i.e. the smallest set s.t. $\partial IP \subseteq \partial_a IP$ and there exist polynomials f_1, \ldots, f_k s.t. $\partial_a IP = \{x \in \mathbb{C}^d \mid f_1(x) = \cdots = f_k(x) = 0\}.$

Proposition.

The polynomial p(x) is divisible by $||x||^2 = x_1^2 + \cdots + x_d^2$.

The algebraic boundary $\partial_a IP$ of IP is the Zariski closure of ∂IP ,

i.e. the smallest set s.t. $\partial IP \subseteq \partial_a IP$ and there exist polynomials f_1, \ldots, f_k s.t. $\partial_a IP = \{x \in \mathbb{C}^d \mid f_1(x) = \cdots = f_k(x) = 0\}.$

Proposition.

The polynomial p(x) is divisible by $||x||^2 = x_1^2 + \cdots + x_d^2$.

Let
$$H = \{C_i \mid i \in I\}$$
 and $f(x) = \prod_{i \in I} \left(q_i - \frac{p_i}{\|x\|^2}\right)$. Then

$$\partial_a IP = \{ x \in \mathbb{C}^d \mid f(x) = 0 \}$$

The algebraic boundary $\partial_a IP$ of IP is the Zariski closure of ∂IP ,

i.e. the smallest set s.t. $\partial IP \subseteq \partial_a IP$ and there exist polynomials f_1, \ldots, f_k s.t. $\partial_a IP = \{x \in \mathbb{C}^d \mid f_1(x) = \cdots = f_k(x) = 0\}.$

Proposition.

The polynomial p(x) is divisible by $||x||^2 = x_1^2 + \cdots + x_d^2$.

Let
$$H = \{C_i \mid i \in I\}$$
 and $f(x) = \prod_{i \in I} \left(q_i - \frac{p_i}{\|x\|^2}\right)$. Then

$$\partial_a IP = \{ x \in \mathbb{C}^d \mid f(x) = 0 \}$$
$$= \bigcup_{i \in I} \underbrace{\mathcal{V}\left(q_i - \frac{p_i}{\|x\|^2}\right)}_{\text{irreducible component:}}$$

irreducible components

The algebraic boundary $\partial_a IP$ of IP is the Zariski closure of ∂IP ,

i.e. the smallest set s.t. $\partial IP \subseteq \partial_a IP$ and there exist polynomials f_1, \ldots, f_k s.t. $\partial_a IP = \{x \in \mathbb{C}^d \mid f_1(x) = \cdots = f_k(x) = 0\}.$

Proposition.

The polynomial p(x) is divisible by $||x||^2 = x_1^2 + \cdots + x_d^2$.

Let
$$H = \{C_i \mid i \in I\}$$
 and $f(x) = \prod_{i \in I} \left(q_i - \frac{p_i}{\|x\|^2}\right)$. Then

$$\partial_a IP = \{ x \in \mathbb{C}^d \mid f(x) = 0 \}$$
$$= \bigcup_{i \in I} \underbrace{\mathcal{V}\left(q_i - \frac{p_i}{\|x\|^2}\right)}_{\text{irreducible components}}$$

What are the degrees of the irreducible components?

Theorem 2 [Berlow, B., Meroni, Shankar (2021)] $deg\left(q(x) - \frac{p(x)}{\|x\|^2}\right) \le \# \text{ vertices of } P \cap x^{\perp}.$

Theorem 2 [Berlow, B., Meroni, Shankar (2021)] $deg\left(q(x) - \frac{p(x)}{\|x\|^2}\right) \le \# \text{ vertices of } P \cap x^{\perp}.$

Corollary

The degrees of the irreducible components of $\partial_a IP$ are bounded by number of edges of $P - (\dim(P) - 1))$.

Theorem 2 [Berlow, B., Meroni, Shankar (2021)] $deg\left(q(x) - \frac{p(x)}{\|x\|^2}\right) \le \# \text{ vertices of } P \cap x^{\perp}.$

Corollary

The degrees of the irreducible components of $\partial_a IP$ are bounded by number of edges of $P - (\dim(P) - 1))$.

Example:

$$\begin{split} P_1 &= \operatorname{conv}\left(\begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \right) \\ \text{highest degree of irreducible component} = 4 \\ \text{number of edges of } P_1 - (\dim(P_1) - 1)) = 6 - (3 - 1) = 4 \end{split}$$

Theorem 2 [Berlow, B., Meroni, Shankar (2021)] $deg\left(q(x) - \frac{p(x)}{\|x\|^2}\right) \le \# \text{ vertices of } P \cap x^{\perp}.$

Corollary

The degrees of the irreducible components of $\partial_a IP$ are bounded by number of edges of $P - (\dim(P) - 1))$.

Example:

$$\begin{split} P_1 &= \operatorname{conv}\left(\begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \right) \\ \text{highest degree of irreducible component} = 4 \\ \text{number of edges of } P_1 - (\dim(P_1) - 1)) = 6 - (3 - 1) = 4 \end{split}$$

 $P_2=[-1,1]^3$ highest degree of irreducible component =3 number of edges of $P_2-(\dim(P_2)-1))=12-(3-1)=10>>3$

Corollary

If ${\cal P}$ is centrally symmetric and centered at the origin, then we can improve these bounds to

$$\begin{split} & \deg\left(q(x) - \frac{p(x)}{\|x\|^2}\right) \leq \frac{1}{2}(\# \text{ vertices of } P \cap x^{\perp}) \\ & \frac{1}{2}\left(\text{number of edges of } P - \left(\dim(P) - 1\right)\right). \end{split}$$

Corollary

If ${\cal P}$ is centrally symmetric and centered at the origin, then we can improve these bounds to

$$\begin{split} & \deg\left(q(x) - \frac{p(x)}{\|x\|^2}\right) \leq \frac{1}{2}(\# \text{ vertices of } P \cap x^{\perp}) \\ & \frac{1}{2}\left(\text{number of edges of } P - \left(\dim(P) - 1\right)\right). \end{split}$$

Example: $P_2 = [-1, 1]^3$

highest degree of irreducible component = $3 = \frac{1}{2} (\# \text{ vertices of a hexagon})$

Proposition [Berlow, B., Meroni, Shankar (2021)]

Let $P = [-1, 1]^d$. Then the number of irreducible components of IP of degree 1 is at least 2d.

	# chambers	degree					
dim	of H	bound	$\deg = 1$	2	3	4	5
2	4	1	4				
3	14	5	6		8		
4	104	14	8		32	64	
5	1882	38	10		80	320	1472

Intersection Bodies of Polytopes