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1P 1S NOT ALWAYS CONVEX

What can we say about IP?

How does the boundary look like?

— finitely many "pieces”? Structure of pieces? Possible shapes?

Thereom 1
IP is semialgebraic.

Theorem 2
The degree of the algebraic boundary of I P is bounded by

number of edges of P — (dim(P) — 1)).



Part 1: 1P is semialgebraic*.

*j.e. a subset of R? defined by a boolean combination of polynomial
inequalities.
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EXAMPLE: THE 3-CUBE

Let P =[-1,1]3, 2 € R3. Then Q = Pna* can have different shapes.
vertices of ) «+— edges of P

General idea: Write the volume of P N+ in terms of 2 € R3.

First question:
For which = € R? intersects =+ a fixed set of edges of P?
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HYPERPLANE ARRANGEMENT H

H = {vt | visavertex of P and v # 0}.

C max chamber of H = Vx € C': 2 intersects P in fixed set of edges

The polyhedral fan induced by H is the normal fan of the zonotope

Z(P)y= Y [-v]
v vertex of P
"Pieces” of IP +— open chambers of H
+— vertices of Z(P)
+— facets of Z(P)°

IP P H Z(P)°




Z(P) CAN HAVE MANY Ps!

left: 1P, for Py = [-1,1]?

right:  IPy fOl’PQZCOIlV((Ei),<_%1>7(%1)7(j1>)

center:  Z(Py)° = Z(P)°

= The zonotope Z(P) does not determine the polytope P or the
intersection body I P!
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THEOREM 1: [ P IS SEMIALGEBRAIC

Thereom 1
IP is semialgebraic. (For simplicity: 0 € int(P))

Proof. 1. H has finitely many open chambers C.

2. let C € H, fixz € C arbitrary. Then Q = PN+ is a polytope of
dimension d — 1.
Let v € Q vertex. Then v = [a,b] Nz for [a, b] edge of P.

. (b, x)a — {a,z)b
(b—a,x)

Triangulate each facet of @ (without new vertices).
Let A be a (d — 2)-dim. simplex in this triangulation. Then

Q= U conv(A,0)

facets of Q

is a triangulation of Q.
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Proof (cont.).
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Proof (cont.).

The volume of conv(A, 0) = conv(vy, ..., v4-1,0) is = det(My(z)),
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THEOREM 1: [ P IS SEMIALGEBRAIC

Proof (cont.).

The volume of conv(A, 0) = conv(vy, ..., v4-1,0) is = det(My(z)),
v () (b1,x)a1—(a1,z)bs
’UQ(JI) (b1—a1,z)
Mk(l‘) - - <bd—17$>ad—1;<ad—17w>bd—1
vg—1(7) <bd‘1ld‘l’gﬁ>

e Bl

vola i (PRat) = 3 S det(My) = ||p|($)

~ q@)’
(finite sum)
p(x)
IPNC={zeClp(zx) >1}={zeclC|-————>1
{z € Clo(a) 2 1} = o < €l 0 > 1)

= {z € C| |l2lPq(x) - p(x) < O}
= IP is semialgebraic.
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e —eone((1). (1) (7). (4)) comonel(}).(1). (1)

A +y*+2%) 4
@y 2o = oy s, ~ 3



EXAMPLE: 3-CUBE | p(z)|¢c = %9

e —eone((1). (1) (7). (4)) comonel(}).(1). (1)

ey o, = @+ 4 4
(22 +y?+2%2)3z 3z
— (2% —2zy +9y° — 222 - 2yz + 2°) (2® +¢* + 2°)
(22 4+ y2 + 22)3 zyz
—(2% — 22y + y* — 222 — 2yz + 2?)
3xyz

p(x,y,2)|c, =




Part 2: The algebraic boundary
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THE ALGEBRAIC BOUNDARY 0,1 P

The algebraic boundary 9,IP of IP is the R-Zariski closure of I P.
let H={C;| i€ I}.Then

9uIP < | J{x € B | ||e]?qi(x) — pi() = 0}
el

Prop.: p is divisible by ||=[]2.

Di

P = -
o Uv(ql x||2>
—_——

icl

irreducible components

What are the degrees of the irreducible components?

il



EXAMPLE: THE 3-CUBE [—1,1]?

B 4(2% +y? + 22)
(22 + y% + 2?2)

ql — p_l —
[l

=3z—4


https://mathrepo.mis.mpg.de/intersection-bodies/case-study.html

EXAMPLE: THE 3-CUBE [—1,1]?

p1 4(z? +y? + 2%)
- =3y 2 T 3,4
N el (@ +12 +22)

qg—ﬁ=6xyz—|—2x2—4:ry+2y2—4;z:z—4yz—|—222
x


https://mathrepo.mis.mpg.de/intersection-bodies/case-study.html

EXAMPLE: THE 3-CUBE [—1,1]?

1 4(:152 +92 4+ z2)
7Rt LA S N/ $ Y
NP T @+ )

qg—ﬁ=6xyz—|—2:c2—4xy+2y2—4;z:z—4yz—|—222
x

= If P =[-1,1]3 then the possible degrees are 1 and 3.

What happens if we translate P?
M MathRepo


https://mathrepo.mis.mpg.de/intersection-bodies/case-study.html

DEGREE BOUND

deg (q(x) = ﬁ%) < # vertices of PN L.
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Theorem 2

Corollary

W”’) < # vertices of PNzt

The degree of the algebraic boundary of I P is bounded by
number of edges of P — (dim(P) — 1)).

Example: P, = [-1,1]3
number of edges of P, —

(dim(Py) — 1)) =12 — (3—1) = 10 >> 3



DEGREE BOUND

Theorem 2
deg (q( ) — ””’) < 4 vertices of PNzt

=1°

Corollary
The degree of the algebraic boundary of I P is bounded by

number of edges of P — (dim(P) — 1)).

Example: P, = [-1,1]3
number of edges of P, — (dim(P;) —1)) =12—-(3—-1) =10 >> 3

oo (().(7)-(2)-(1)
highest degree of irreducible component = 4

number of edges of P, — (dim(P2) — 1)) =6—-(3—-1) =4
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Theorem 2
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Corollary
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DEGREE BOUND

Theorem 2
deg (q( )= II(H2> < # vertices of PNzt

Corollary
The degree of the algebraic boundary of I P is bounded by

number of edges of P — (dim(P) — 1)).

Example: P, = [-1,1]3

number of edges of P, — (dim(P;) —1)) =12—-(3—-1) =10 >> 3

Corollary
If P is centrally symmetric and centered at the origin, then we can

improve the bound to
1 (number of edges of P — (dim(P) — 1)).

3 (number of edges of P — (dim(P;) — 1)) = 3(12—(3—1)) =5>3
deg (Q(x) "“)) 1 (# vertices of a hexagon) = 3

=1
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CASE STUDY: d-DIMENSIONAL CENTERED CUBE [—1, 1]¢

Proposition

Let P = [—1,1]%. Then the number of irreducible components of 1P
of degree 1 is at least 2d.

Conjecture: This number is exactly 2d.
= many more non-linear pieces!

# chambers degree
dim of H bound | deg=1 2 3 4 5
2 4 1 4
3 14 5 6 8
4 104 14 8 32 64
5 1882 38 10 80 320 1472

Thank you!
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