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RADIAL FUNCTIONS AND STAR BODIES

A bounded set K is a star body if for every s ∈ K holds [0, s] ⊆ K .

The radial function of K is

ρK : Rd → R

x 7→ max(λ ∈ R | λx ∈ K).

Given a radial function ρ, we associate

K = {x ∈ Rd | ρ(x) ≥ 1}.

Definition
Let P be a polytope. Then the intersection body IP of P is given by
the radial function (restricted to the sphere)

ρIP (u) = vold−1(P ∩ u⊥)

for u ∈ Sd−1.
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IP IS NOT ALWAYS CONVEX

What can we say about IP ?

How does the boundary look like?

→ finitely many ”pieces”? Structure of pieces? Possible shapes?

Thereom 1
IP is semialgebraic.

Theorem 2
The degree of the algebraic boundary of IP is bounded by

number of edges of P − (dim(P )− 1)).
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Part 1: IP is semialgebraic∗.

∗ i.e. a subset of Rd defined by a boolean combination of polynomial
inequalities.
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EXAMPLE: THE 3-CUBE

Let P = [−1, 1]3, x ∈ R3. Then Q = P ∩ x⊥ can have different shapes.

vertices of Q←→ edges of P

General idea: Write the volume of P ∩ x⊥ in terms of x ∈ R3.

First question:
For which x ∈ R3 intersects x⊥ a fixed set of edges of P ?
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HYPERPLANE ARRANGEMENT H

H = {v⊥ | v is a vertex of P and v 6= 0}.

C max chamber of H ⇒ ∀x ∈ C : x⊥ intersects P in fixed set of edges

The polyhedral fan induced by H is the normal fan of the zonotope

Z(P ) =
∑

v vertex of P

[−v, v]

”Pieces” of IP ←→ open chambers of H
←→ vertices of Z(P )

←→ facets of Z(P )◦

IP P H

Z(P ) Z(P )◦
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Z(P ) CAN HAVE MANY PS!

left: IP1 for P1 = [−1, 1]3

right: IP2 for P2 = conv
((−1

−1
−1

)
,
(−1

1
1

)
,
(

1
−1
1

)
,
(

1
1
−1

))
center: Z(P1)

◦ = Z(P2)
◦

⇒ The zonotope Z(P ) does not determine the polytope P or the
intersection body IP !
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THEOREM 1: IP IS SEMIALGEBRAIC

Thereom 1
IP is semialgebraic. (For simplicity: 0 ∈ int(P ))

Proof.

1. H has finitely many open chambers C .

2. Let C ∈ H , fix x ∈ C arbitrary. Then Q = P ∩ x⊥ is a polytope of
dimension d− 1.

Let v ∈ Q vertex. Then v = [a, b] ∩ x⊥ for [a, b] edge of P .

v =
〈b, x〉a− 〈a, x〉b
〈b− a, x〉

Triangulate each facet of Q (without new vertices).
Let ∆ be a (d− 2)-dim. simplex in this triangulation. Then

Q =
⋃

facets of Q

conv(∆, 0)

is a triangulation of Q.
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THEOREM 1: IP IS SEMIALGEBRAIC

Proof (cont.).

The volume of conv(∆, 0) = conv(v1, . . . , vd−1, 0) is 1
d! det(Mk(x)),

Mk(x) =


v1(x)

v2(x)
...

vd−1(x)
x

∥x∥

 =


⟨b1,x⟩a1−⟨a1,x⟩b1

⟨b1−a1,x⟩
...

⟨bd−1,x⟩ad−1−⟨ad−1,x⟩bd−1

⟨bd−1−ad−1,x⟩
x

∥x∥


vold−1(P ∩ x⊥) =

∑
k

(finite sum)

1

d!
det(Mk)

=
p(x)

‖x‖q(x)
,

IP ∩ C = {x ∈ C|ρ(x) ≥ 1} = {x ∈ C| p(x)

‖x‖2q(x)
≥ 1}

= {x ∈ C | ‖x‖2q(x)− p(x) ≤ 0}.
⇒ IP is semialgebraic.
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EXAMPLE: 3-CUBE | ρ(x)|C = p(x)
∥x∥2q(x)

C1 = cone(
(

1
0
1

)
,
(

0
1
1

)
,
(−1

0
1

)
,
(

0
−1
1

)
) C2 = cone(

(
1
0
1

)
,
(

1
1
0

)
,
(

0
1
1

)
)

ρ(x, y, z)|C1
=

4(x2 + y2 + z2)

(x2 + y2 + z2)3z
=

4

3z

ρ(x, y, z)|C2
=
−
(
x2 − 2xy + y2 − 2xz − 2 yz + z2

)(
x2 + y2 + z2

)
(x2 + y2 + z2)3xyz

=
−(x2 − 2xy + y2 − 2xz − 2yz + z2)

3xyz
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Part 2: The algebraic boundary
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THE ALGEBRAIC BOUNDARY ∂aIP

The algebraic boundary ∂aIP of IP is the R-Zariski closure of ∂IP .

Let H = {Ci | i ∈ I}. Then

∂aIP ⊆
⋃
i∈I

{x ∈ Rd | ‖x‖2qi(x)− pi(x) = 0}

Prop.: p is divisible by ‖x‖2.

∂aIP =
⋃
i∈I

V
(
qi −

pi
‖x‖2

)
︸ ︷︷ ︸
irreducible components

What are the degrees of the irreducible components?
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EXAMPLE: THE 3-CUBE [−1, 1]3

q1 −
p1
‖x‖2

= 3z − 4(x2 + y2 + z2)

(x2 + y2 + z2)
= 3z − 4

q2 −
p1
‖x‖2

= 6xyz + 2x2 − 4xy + 2 y2 − 4xz − 4 yz + 2 z2

⇒ If P = [−1, 1]3 then the possible degrees are 1 and 3.

What happens if we translate P ?
MathRepo

12
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DEGREE BOUND
Theorem 2

deg
(
q(x)− p(x)

∥x∥2

)
≤ # vertices of P ∩ x⊥.

Corollary
The degree of the algebraic boundary of IP is bounded by

number of edges of P − (dim(P )− 1)).

Example: P1 = [−1, 1]3

number of edges of P1 − (dim(P1)− 1)) = 12− (3− 1) = 10 >> 3

Corollary
If P is centrally symmetric and centered at the origin, then we can
improve the bound to

1
2 (number of edges of P − (dim(P )− 1)) .

1
2 (number of edges of P1 − (dim(P1)− 1)) = 1

2 (12− (3− 1)) = 5 > 3

deg
(
q(x)− p(x)

∥x∥2

)
= 1

2 (# vertices of a hexagon) = 3

13
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CASE STUDY: d-DIMENSIONAL CENTERED CUBE [−1, 1]d

Proposition
Let P = [−1, 1]d. Then the number of irreducible components of IP
of degree 1 is at least 2d.

Conjecture: This number is exactly 2d.
⇒ many more non-linear pieces!

# chambers degree
dim of H bound deg = 1 2 3 4 5

2 4 1 4

3 14 5 6 8

4 104 14 8 32 64

5 1882 38 10 80 320 1472

Thank you!

14
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