INTERSECTION BODIES OF POLYTOPES

Marie-Charlotte Brandenburg

Joint work with Katalin Berlow, Chiara Meroni and Isabelle Shankar 30 November 2021

Women in Algebra and Symbolic Computations II

INTERSECTION BODIES OF POLYTOPES

Katalin Berlow UC Berkeley

Chiara Meroni MPI MiS

Isabelle Shankar MPI MiS

https://arxiv.org/abs/2110.05996

https://mathrepo.mis.mpg.de/intersection-bodies

A bounded set K is a star body if for every $s \in K$ holds $[0, s] \subseteq K$.

A bounded set K is a star body if for every $s \in K$ holds $[0, s] \subseteq K$. The radial function of K is

 $\rho_K : \mathbb{R}^d \to \mathbb{R}$ $x \mapsto \max(\lambda \in \mathbb{R} \mid \lambda x \in K).$

A bounded set K is a star body if for every $s \in K$ holds $[0, s] \subseteq K$. The radial function of K is

$$\rho_K : \mathbb{R}^d \to \mathbb{R}$$
$$x \mapsto \max(\lambda \in \mathbb{R} \mid \lambda x \in K).$$

Given a radial function ρ , we associate

$$K = \{ x \in \mathbb{R}^d \mid \rho(x) \ge 1 \}.$$

A bounded set K is a star body if for every $s \in K$ holds $[0, s] \subseteq K$. The radial function of K is

$$\rho_K : \mathbb{R}^d \to \mathbb{R}$$
$$x \mapsto \max(\lambda \in \mathbb{R} \mid \lambda x \in K).$$

Given a radial function ρ , we associate

$$K = \{ x \in \mathbb{R}^d \mid \rho(x) \ge 1 \}.$$

Definition

Let P be a polytope. Then the *intersection body* IP of P is given by the radial function (restricted to the sphere)

$$\rho_{IP}(u) = \operatorname{vol}_{d-1}(P \cap u^{\perp})$$

for $u \in S^{d-1}$.

Definition

Let P be a polytope. Then the *intersection body* IP of P is given by the radial function (restricted to the sphere)

$$\rho_{IP}(u) = \operatorname{vol}_{d-1}(P \cap u^{\perp})$$

for $u \in S^{d-1}$.

${\it IP}$ is not always convex

What can we say about *IP*?

How does the boundary look like?

 \rightarrow finitely many "pieces"? Structure of pieces? Possible shapes?

What can we say about *IP*?

How does the boundary look like?

 \rightarrow finitely many "pieces"? Structure of pieces? Possible shapes?

Thereom 1 (Berlow, B., Meroni, Shankar)

IP is semialgebraic, i.e. a subset of \mathbb{R}^d defined by finite unions and intersections of polynomial inequalities.

What can we say about *IP*?

How does the boundary look like?

 \rightarrow finitely many "pieces"? Structure of pieces? Possible shapes?

Thereom 1 (Berlow, B., Meroni, Shankar)

IP is semialgebraic, i.e. a subset of \mathbb{R}^d defined by finite unions and intersections of polynomial inequalities.

Theorem 2 (Berlow, B., Meroni, Shankar)

The degree of the irreducible components of the algebraic boundary of *IP* is bounded by

number of edges of $P - (\dim(P) - 1))$.

$\label{eq:example:the} \textsc{Example: The 3-cube}$

Let $P = [-1,1]^3$, $x \in \mathbb{R}^3$. Then $Q = P \cap x^{\perp}$ can have different shapes.

$\label{eq:example:the} \textsc{Example: The 3-cube}$

Let $P = [-1, 1]^3$, $x \in \mathbb{R}^3$. Then $Q = P \cap x^{\perp}$ can have different shapes.

vertices of $Q \longleftrightarrow$ edges of P

Example: The 3-cube

Let $P = [-1, 1]^3$, $x \in \mathbb{R}^3$. Then $Q = P \cap x^{\perp}$ can have different shapes.

vertices of $Q \longleftrightarrow$ edges of P

First question: Which subsets $C \subseteq \mathbb{R}^3$ have the following property: $\forall x \in C: x^{\perp}$ intersects a fixed set of edges of *P*.

Example: The 3-cube

Let $P = [-1, 1]^3$, $x \in \mathbb{R}^3$. Then $Q = P \cap x^{\perp}$ can have different shapes.

vertices of $Q \longleftrightarrow$ edges of P

First question: Which subsets $C \subseteq \mathbb{R}^3$ have the following property: $\forall x \in C: x^{\perp}$ intersects a fixed set of edges of P.

General idea: Use this to write the volume of $P \cap x^{\perp}$ in terms of $x \in \mathbb{R}^3$.

Hyperplane Arrangement ${\cal H}$

 $H = \{ v^{\perp} \mid v \text{ is a vertex of } P \text{ and } v \neq 0 \}.$

C max chamber of $H \Rightarrow \forall x \in C : x^{\perp}$ intersects P in fixed set of edges

Hyperplane Arrangement H

 $H = \{v^{\perp} \mid v \text{ is a vertex of } P \text{ and } v \neq 0\}.$

C max chamber of $H \Rightarrow \forall x \in C : x^{\perp}$ intersects P in fixed set of edges

"Pieces" of $\partial IP \longleftrightarrow$ open chambers of H

 $H = \{v^{\perp} \mid v \text{ is a vertex of } P \text{ and } v \neq 0\}.$

C max chamber of $H \Rightarrow \forall x \in C : x^{\perp}$ intersects P in fixed set of edges

The polyhedral fan induced by H is the normal fan of the zonotope

$$Z(P) = \sum_{v \text{ vertex of } P} [-v, v]$$

"Pieces" of $\partial IP \longleftrightarrow$ open chambers of H \longleftrightarrow vertices of Z(P)

 $H = \{v^{\perp} \mid v \text{ is a vertex of } P \text{ and } v \neq 0\}.$

C max chamber of $H \Rightarrow \forall x \in C : x^{\perp}$ intersects P in fixed set of edges

The polyhedral fan induced by H is the normal fan of the zonotope

$$Z(P) = \sum_{v \text{ vertex of } P} [-v, v]$$

"Pieces" of $\partial IP \leftrightarrow$ open chambers of H \leftrightarrow vertices of Z(P) \leftrightarrow facets of $Z(P)^{\circ}$ IPIPPHZ(P) $Z(P)^{\circ}$

${\cal Z}(P)$ can have many $P{\rm S}!$

left: IP_1 for $P_1 = [-1, 1]^3$ right: IP_2 for $P_2 = \operatorname{conv}\left(\begin{pmatrix} -1\\ -1\\ -1 \end{pmatrix}, \begin{pmatrix} -1\\ 1\\ 1 \end{pmatrix}, \begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix}, \begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix}\right)$ center: $Z(P_1)^\circ = Z(P_2)^\circ$

 \Rightarrow The zonotope Z(P) does not determine the polytope P or the intersection body IP!

Lemma (Berlow, B., Meroni, Shankar)

Let $C \subseteq H$ be an open chamber. Then there exist polynomials $p(x), q(x) \in \mathbb{R}[x_1, \dots, x_d]$ such that for all $x \in C$ holds $\operatorname{vol}_{d-1}(P \cap x^{\perp}) = \frac{p(x)}{\|x\|q(x)}.$

Lemma (Berlow, B., Meroni, Shankar)

Let $C \subseteq H$ be an open chamber. Then there exist polynomials $p(x), q(x) \in \mathbb{R}[x_1, \dots, x_d]$ such that for all $x \in C$ holds $\operatorname{vol}_{d-1}(P \cap x^{\perp}) = \frac{p(x)}{\|x\|q(x)}.$

 $IP \cap C = \{x \in C \mid \rho(x) \ge 1\}$

Lemma (Berlow, B., Meroni, Shankar)

Let $C \subseteq H$ be an open chamber. Then there exist polynomials $p(x), q(x) \in \mathbb{R}[x_1, \dots, x_d]$ such that for all $x \in C$ holds $\operatorname{vol}_{d-1}(P \cap x^{\perp}) = \frac{p(x)}{\|x\|q(x)}.$

$$IP \cap C = \{x \in C \mid \rho(x) \ge 1\} \\ = \{x \in C \mid \frac{p(x)}{\|x\|^2 q(x)} \ge 1\}$$

Lemma (Berlow, B., Meroni, Shankar)

Let $C \subseteq H$ be an open chamber. Then there exist polynomials $p(x), q(x) \in \mathbb{R}[x_1, \dots, x_d]$ such that for all $x \in C$ holds $\operatorname{vol}_{d-1}(P \cap x^{\perp}) = \frac{p(x)}{\|x\|q(x)}.$

$$IP \cap C = \{x \in C \mid \rho(x) \ge 1\}$$

= $\{x \in C \mid \frac{p(x)}{\|x\|^2 q(x)} \ge 1\}$
= $\{x \in C \mid \|x\|^2 q(x) - p(x) \le 0\}$

Lemma (Berlow, B., Meroni, Shankar)

Let $C \subseteq H$ be an open chamber. Then there exist polynomials $p(x), q(x) \in \mathbb{R}[x_1, \dots, x_d]$ such that for all $x \in C$ holds $\operatorname{vol}_{d-1}(P \cap x^{\perp}) = \frac{p(x)}{\|x\|q(x)}.$

$$IP \cap C = \{x \in C \mid \rho(x) \ge 1\}$$

= $\{x \in C \mid \frac{p(x)}{\|x\|^2 q(x)} \ge 1\}$
= $\{x \in C \mid \|x\|^2 q(x) - p(x) \le 0\}$

.

Thereom 1 (Berlow, B., Meroni, Shankar)

IP is semialgebraic, i.e. a subset of \mathbb{R}^d defined by finite unions and intersections of polynomial inequalities.

The algebraic boundary $\partial_a IP$ of IP is the \mathbb{R} -Zariski closure of ∂IP .

The algebraic boundary $\partial_a IP$ of IP is the \mathbb{R} -Zariski closure of ∂IP . Let $H = \{C_i \mid i \in I\}$. Then

$$\partial_a IP = \bigcup_{i \in I} \underbrace{\mathcal{V}\left(q_i - \frac{p_i}{\|x\|^2}\right)}_{i = 1 \text{ order}}$$

reducible components

The algebraic boundary $\partial_a IP$ of IP is the \mathbb{R} -Zariski closure of ∂IP . Let $H = \{C_i \mid i \in I\}$. Then

$$\partial_a IP = \bigcup_{i \in I} \underbrace{\mathcal{V}\left(q_i - \frac{p_i}{\|x\|^2}\right)}_{\text{irreducible components}}$$

What are the degrees of the irreducible components?

Theorem 2 (Berlow, B., Meroni, Shankar)

$$\mathrm{deg}\left(q(x)-\frac{p(x)}{\|x\|^2}\right) \leq \#$$
 vertices of $P\cap x^\perp$

Theorem 2 (Berlow, B., Meroni, Shankar)

$$\mathrm{deg}\left(q(x)-\frac{p(x)}{\|x\|^2}\right) \leq \#$$
 vertices of $P\cap x^\perp$

Corollary

The degrees of the irreducible components of the algebraic boundary of IP are bounded by number of edges of $P - (\dim(P) - 1)$).

Example: $P_1 = [-1, 1]^3$

highest degree of irreducible component = 3

number of edges of $P_1 - (\dim(P_1) - 1)) = 12 - (3 - 1) = 10 >> 3$

Theorem 2 (Berlow, B., Meroni, Shankar)

$$\mathrm{deg}\left(q(x)-\frac{p(x)}{\|x\|^2}\right) \leq \#$$
 vertices of $P\cap x^\perp$

Corollary

The degrees of the irreducible components of the algebraic boundary of IP are bounded by number of edges of $P - (\dim(P) - 1)$).

Example: $P_1 = [-1, 1]^3$

highest degree of irreducible component = 3

number of edges of $P_1 - (\dim(P_1) - 1)) = 12 - (3 - 1) = 10 >> 3$

$$P_2 = \operatorname{conv}\left(\begin{pmatrix} -1\\-1\\-1 \end{pmatrix}, \begin{pmatrix} -1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1 \end{pmatrix}\right)$$

highest degree of irreducible component = 4

number of edges of $P_2 - (\dim(P_2) - 1)) = 6 - (3 - 1) = 4$

Corollary

If ${\cal P}$ is centrally symmetric and centered at the origin, then we can improve the bounds to

$$\deg\left(q(x) - \frac{p(x)}{\|x\|^2}\right) \le \#\frac{1}{2} (\text{ vertices of } P \cap x^{\perp})$$
$$\frac{1}{2} (\text{number of edges of } P - (\dim(P) - 1)) .$$

Corollary

If P is centrally symmetric and centered at the origin, then we can improve the bounds to

$$\deg\left(q(x) - \frac{p(x)}{\|x\|^2}\right) \le \#\frac{1}{2} (\text{ vertices of } P \cap x^{\perp})$$
$$\frac{1}{2} (\text{number of edges of } P - (\dim(P) - 1)) .$$

Example: $P_1 = [-1, 1]^3$

highest degree of irreducible component = 3

 $\frac{1}{2}$ (number of edges of $P_1 - (\dim(P_1) - 1)) = \frac{1}{2}(12 - (3 - 1)) = 5 > 3$

Corollary

If P is centrally symmetric and centered at the origin, then we can improve the bounds to

$$\deg\left(q(x) - \frac{p(x)}{\|x\|^2}\right) \le \#\frac{1}{2} (\text{ vertices of } P \cap x^{\perp})$$
$$\frac{1}{2} (\text{number of edges of } P - (\dim(P) - 1)) .$$

Example: $P_1 = [-1, 1]^3$

highest degree of irreducible component = 3

 $\frac{1}{2} (\text{number of edges of } P_1 - (\dim(P_1) - 1)) = \frac{1}{2}(12 - (3 - 1)) = 5 > 3$ $\deg\left(q(x) - \frac{p(x)}{\|x\|^2}\right) = \frac{1}{2} (\# \text{ vertices of a hexagon}) = 3$

Corollary

If P is centrally symmetric and centered at the origin, then we can improve the bounds to

$$\deg\left(q(x) - \frac{p(x)}{\|x\|^2}\right) \le \#\frac{1}{2} (\text{ vertices of } P \cap x^{\perp})$$
$$\frac{1}{2} (\text{number of edges of } P - (\dim(P) - 1)) .$$

Example: $P_1 = [-1, 1]^3$

highest degree of irreducible component = 3

 $\frac{1}{2} (\text{number of edges of } P_1 - (\dim(P_1) - 1)) = \frac{1}{2}(12 - (3 - 1)) = 5 > 3$ $\deg \left(q(x) - \frac{p(x)}{\|x\|^2}\right) = \frac{1}{2} (\# \text{ vertices of a hexagon}) = 3$

Thank you!

Corollary

If P is centrally symmetric and centered at the origin, then we can improve the bounds to

$$\deg\left(q(x) - \frac{p(x)}{\|x\|^2}\right) \le \#\frac{1}{2} (\text{ vertices of } P \cap x^{\perp})$$
$$\frac{1}{2} (\text{number of edges of } P - (\dim(P) - 1)) .$$

Example: $P_1 = [-1, 1]^3$

highest degree of irreducible component = 3

 $\frac{1}{2} (\text{number of edges of } P_1 - (\dim(P_1) - 1)) = \frac{1}{2}(12 - (3 - 1)) = 5 > 3$ $\deg\left(q(x) - \frac{p(x)}{\|x\|^2}\right) = \frac{1}{2} (\# \text{ vertices of a hexagon}) = 3$

Thank you!

Case study: d-dimensional centered cube $[-1,1]^d$

Proposition (Berlow, B., Meroni, Shankar)

Let $P = [-1, 1]^d$. Then the number of irreducible components of IP of degree 1 is at least 2d.

Conjecture: This number is exactly 2d. \Rightarrow many more non-linear pieces!

chambers degree bound dim of H $deg = 1 \quad 2 \quad 3 \quad 4$