InTERSECTION BODIES OF POLYTOPES

Marie-Charlotte Brandenburg
Joint work with Katalin Berlow, Chiara Meroni and Isabelle Shankar
30 November 2021
Women in Algebra and Symbolic Computations II

Intersection Bodies of Polytopes

Katalin Berlow UC Berkeley

Chiara Meroni MPI MiS

Isabelle Shankar MPI MiS
https://arxiv.org/abs/2110.05996
https://mathrepo.mis.mpg.de/intersection-bodies

Radial functions and star bodies

A bounded set K is a star body if for every $s \in K$ holds $[0, s] \subseteq K$.

Radial functions and star bodies

A bounded set K is a star body if for every $s \in K$ holds $[0, s] \subseteq K$. The radial function of K is

$$
\begin{aligned}
\rho_{K}: \mathbb{R}^{d} & \rightarrow \mathbb{R} \\
x & \mapsto \max (\lambda \in \mathbb{R} \mid \lambda x \in K) .
\end{aligned}
$$

RADIAL FUNCTIONS AND STAR BODIES

A bounded set K is a star body if for every $s \in K$ holds $[0, s] \subseteq K$. The radial function of K is

$$
\begin{aligned}
\rho_{K}: \mathbb{R}^{d} & \rightarrow \mathbb{R} \\
x & \mapsto \max (\lambda \in \mathbb{R} \mid \lambda x \in K) .
\end{aligned}
$$

Given a radial function ρ, we associate

$$
K=\left\{x \in \mathbb{R}^{d} \mid \rho(x) \geq 1\right\} .
$$

RADIAL FUNCTIONS AND STAR BODIES

A bounded set K is a star body if for every $s \in K$ holds $[0, s] \subseteq K$. The radial function of K is

$$
\begin{aligned}
\rho_{K}: \mathbb{R}^{d} & \rightarrow \mathbb{R} \\
x & \mapsto \max (\lambda \in \mathbb{R} \mid \lambda x \in K) .
\end{aligned}
$$

Given a radial function ρ, we associate

$$
K=\left\{x \in \mathbb{R}^{d} \mid \rho(x) \geq 1\right\} .
$$

Definition

Let P be a polytope. Then the intersection body $I P$ of P is given by the radial function (restricted to the sphere)

$$
\rho_{I P}(u)=\operatorname{vol}_{d-1}\left(P \cap u^{\perp}\right)
$$

for $u \in S^{d-1}$.

RADIAL FUNCTIONS AND STAR BODIES

Definition

Let P be a polytope. Then the intersection body $I P$ of P is given by the radial function (restricted to the sphere)

$$
\rho_{I P}(u)=\operatorname{vol}_{d-1}\left(P \cap u^{\perp}\right)
$$

for $u \in S^{d-1}$.

IP IS NOT ALWAYS CONVEX

IP IS NOT ALWAYS CONVEX

What can we say about $I P$?
How does the boundary look like?
\rightarrow finitely many "pieces"? Structure of pieces? Possible shapes?

IP IS NOT ALWAYS CONVEX

What can we say about $I P$?
How does the boundary look like?
\rightarrow finitely many "pieces"? Structure of pieces? Possible shapes?

Thereom 1 (Berlow, B., Meroni, Shankar)
$I P$ is semialgebraic, i.e. a subset of \mathbb{R}^{d} defined by finite unions and intersections of polynomial inequalities.

IP IS NOT ALWAYS CONVEX

What can we say about $I P$?
How does the boundary look like?
\rightarrow finitely many "pieces"? Structure of pieces? Possible shapes?

Thereom 1 (Berlow, B., Meroni, Shankar)

$I P$ is semialgebraic, i.e. a subset of \mathbb{R}^{d} defined by finite unions and intersections of polynomial inequalities.

Theorem 2 (Berlow, B., Meroni, Shankar)

The degree of the irreducible components of the algebraic boundary of $I P$ is bounded by

$$
\text { number of edges of } P-(\operatorname{dim}(P)-1)) \text {. }
$$

Example: The 3-cube

Let $P=[-1,1]^{3}, x \in \mathbb{R}^{3}$. Then $Q=P \cap x^{\perp}$ can have different shapes.

Example: The 3-cube

Let $P=[-1,1]^{3}, x \in \mathbb{R}^{3}$. Then $Q=P \cap x^{\perp}$ can have different shapes. vertices of $Q \longleftrightarrow$ edges of P

Example: The 3-cube

Let $P=[-1,1]^{3}, x \in \mathbb{R}^{3}$. Then $Q=P \cap x^{\perp}$ can have different shapes.

$$
\text { vertices of } Q \longleftrightarrow \text { edges of } P
$$

First question: Which subsets $C \subseteq \mathbb{R}^{3}$ have the following property: $\forall x \in C: x^{\perp}$ intersects a fixed set of edges of P.

Example: The 3-cube

Let $P=[-1,1]^{3}, x \in \mathbb{R}^{3}$. Then $Q=P \cap x^{\perp}$ can have different shapes.

$$
\text { vertices of } Q \longleftrightarrow \text { edges of } P
$$

First question: Which subsets $C \subseteq \mathbb{R}^{3}$ have the following property: $\forall x \in C: x^{\perp}$ intersects a fixed set of edges of P.

General idea: Use this to write the volume of $P \cap x^{\perp}$ in terms of $x \in \mathbb{R}^{3}$.

Hyperplane Arrangement H

$$
H=\left\{v^{\perp} \mid v \text { is a vertex of } P \text { and } v \neq 0\right\} .
$$

C max chamber of $H \Rightarrow \forall x \in C: x^{\perp}$ intersects P in fixed set of edges

Hyperplane Arrangement H

$$
H=\left\{v^{\perp} \mid v \text { is a vertex of } P \text { and } v \neq 0\right\} .
$$

C max chamber of $H \Rightarrow \forall x \in C: x^{\perp}$ intersects P in fixed set of edges
"Pieces" of $\partial I P \longleftrightarrow$ open chambers of H

Hyperplane Arrangement H

$$
H=\left\{v^{\perp} \mid v \text { is a vertex of } P \text { and } v \neq 0\right\} .
$$

C max chamber of $H \Rightarrow \forall x \in C: x^{\perp}$ intersects P in fixed set of edges
The polyhedral fan induced by H is the normal fan of the zonotope

$$
Z(P)=\sum_{v \text { vertex of } P}[-v, v]
$$

$$
\text { "Pieces" of } \begin{aligned}
\partial I P & \longleftrightarrow \text { open chambers of } H \\
& \longleftrightarrow \text { vertices of } Z(P)
\end{aligned}
$$

Hyperplane Arrangement H

$$
H=\left\{v^{\perp} \mid v \text { is a vertex of } P \text { and } v \neq 0\right\} .
$$

C max chamber of $H \Rightarrow \forall x \in C: x^{\perp}$ intersects P in fixed set of edges
The polyhedral fan induced by H is the normal fan of the zonotope

$$
Z(P)=\sum_{v \text { vertex of } P}[-v, v]
$$

"Pieces" of $\partial I P \longleftrightarrow$ open chambers of H
\longleftrightarrow vertices of $Z(P)$
\longleftrightarrow facets of $Z(P)^{\circ}$

$Z(P)$ CAN HAVE MANY PS!

left: $\quad I P_{1}$ for $P_{1}=[-1,1]^{3}$
right: $\quad I P_{2}$ for $P_{2}=\operatorname{conv}\left(\left(\begin{array}{c}-1 \\ -1 \\ -1\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)\right)$
center: $\quad Z\left(P_{1}\right)^{\circ}=Z\left(P_{2}\right)^{\circ}$
\Rightarrow The zonotope $Z(P)$ does not determine the polytope P or the intersection body IP!

Theorem 1: $I P$ is semialgebraic

Theorem 1: $I P$ Is Semialgebraic

Lemma (Berlow, B., Meroni, Shankar)
Let $C \subseteq H$ be an open chamber. Then there exist polynomials $p(x), q(x) \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$ such that for all $x \in C$ holds

$$
\operatorname{vol}_{d-1}\left(P \cap x^{\perp}\right)=\frac{p(x)}{\|x\| q(x)}
$$

Theorem 1: $I P$ Is Semialgebraic

Lemma (Berlow, B., Meroni, Shankar)
Let $C \subseteq H$ be an open chamber. Then there exist polynomials $p(x), q(x) \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$ such that for all $x \in C$ holds

$$
\operatorname{vol}_{d-1}\left(P \cap x^{\perp}\right)=\frac{p(x)}{\|x\| q(x)}
$$

$$
I P \cap C=\{x \in C \mid \rho(x) \geq 1\}
$$

Theorem 1: $I P$ Is Semialgebraic

Lemma (Berlow, B., Meroni, Shankar)

Let $C \subseteq H$ be an open chamber. Then there exist polynomials $p(x), q(x) \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$ such that for all $x \in C$ holds

$$
\operatorname{vol}_{d-1}\left(P \cap x^{\perp}\right)=\frac{p(x)}{\|x\| q(x)}
$$

$$
\begin{aligned}
I P \cap C & =\{x \in C \mid \rho(x) \geq 1\} \\
& =\left\{x \in C \left\lvert\, \frac{p(x)}{\|x\|^{2} q(x)} \geq 1\right.\right\}
\end{aligned}
$$

Theorem 1: IP Is SEmiALGEbraic

Lemma (Berlow, B., Meroni, Shankar)

Let $C \subseteq H$ be an open chamber. Then there exist polynomials $p(x), q(x) \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$ such that for all $x \in C$ holds

$$
\operatorname{vol}_{d-1}\left(P \cap x^{\perp}\right)=\frac{p(x)}{\|x\| q(x)}
$$

$$
\begin{aligned}
I P \cap C & =\{x \in C \mid \rho(x) \geq 1\} \\
& =\left\{x \in C \left\lvert\, \frac{p(x)}{\|x\|^{2} q(x)} \geq 1\right.\right\} \\
& =\left\{x \in C \mid\|x\|^{2} q(x)-p(x) \leq 0\right\} .
\end{aligned}
$$

Theorem 1: IP Is SEmiALgebraic

Lemma (Berlow, B., Meroni, Shankar)

Let $C \subseteq H$ be an open chamber. Then there exist polynomials $p(x), q(x) \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$ such that for all $x \in C$ holds

$$
\operatorname{vol}_{d-1}\left(P \cap x^{\perp}\right)=\frac{p(x)}{\|x\| q(x)}
$$

$$
\begin{aligned}
I P \cap C & =\{x \in C \mid \rho(x) \geq 1\} \\
& =\left\{x \in C \left\lvert\, \frac{p(x)}{\|x\|^{2} q(x)} \geq 1\right.\right\} \\
& =\left\{x \in C \mid\|x\|^{2} q(x)-p(x) \leq 0\right\} .
\end{aligned}
$$

Thereom 1 (Berlow, B., Meroni, Shankar)
$I P$ is semialgebraic, i.e. a subset of \mathbb{R}^{d} defined by finite unions and intersections of polynomial inequalities.

The algebraic boundary $\partial_{a} I P$

The algebraic boundary $\partial_{a} I P$ of $I P$ is the \mathbb{R}-Zariski closure of $\partial I P$.

The algebraic boundary $\partial_{a} I P$

The algebraic boundary $\partial_{a} I P$ of $I P$ is the \mathbb{R}-Zariski closure of $\partial I P$. Let $H=\left\{C_{i} \mid i \in I\right\}$. Then

$$
\partial_{a} I P=\bigcup_{i \in I} \underbrace{\mathcal{V}\left(q_{i}-\frac{p_{i}}{\|x\|^{2}}\right)}_{\text {irreducible components }}
$$

The algebraic boundary $\partial_{a} I P$

The algebraic boundary $\partial_{a} I P$ of $I P$ is the \mathbb{R}-Zariski closure of $\partial I P$. Let $H=\left\{C_{i} \mid i \in I\right\}$. Then

$$
\partial_{a} I P=\bigcup_{i \in I} \underbrace{\mathcal{V}\left(q_{i}-\frac{p_{i}}{\|x\|^{2}}\right)}_{\text {irreducible components }}
$$

What are the degrees of the irreducible components?

Degree Bound

Theorem 2 (Berlow, B., Meroni, Shankar)

$$
\operatorname{deg}\left(q(x)-\frac{p(x)}{\|x\|^{2}}\right) \leq \# \text { vertices of } P \cap x^{\perp}
$$

Degree Bound

Theorem 2 (Berlow, B., Meroni, Shankar)

$$
\operatorname{deg}\left(q(x)-\frac{p(x)}{\|x\|^{2}}\right) \leq \# \text { vertices of } P \cap x^{\perp}
$$

Corollary

The degrees of the irreducible components of the algebraic boundary of IP are bounded by number of edges of $P-(\operatorname{dim}(P)-1))$.

Example: $P_{1}=[-1,1]^{3}$
highest degree of irreducible component $=3$
number of edges of $\left.P_{1}-\left(\operatorname{dim}\left(P_{1}\right)-1\right)\right)=12-(3-1)=10 \gg 3$

Degree Bound

Theorem 2 (Berlow, B., Meroni, Shankar)

$$
\operatorname{deg}\left(q(x)-\frac{p(x)}{\|x\|^{2}}\right) \leq \# \text { vertices of } P \cap x^{\perp}
$$

Corollary

The degrees of the irreducible components of the algebraic boundary of IP are bounded by number of edges of $P-(\operatorname{dim}(P)-1))$.

Example: $P_{1}=[-1,1]^{3}$
highest degree of irreducible component $=3$
number of edges of $\left.P_{1}-\left(\operatorname{dim}\left(P_{1}\right)-1\right)\right)=12-(3-1)=10 \gg 3$
$P_{2}=\operatorname{conv}\left(\left(\begin{array}{c}-1 \\ -1 \\ -1\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)\right)$
highest degree of irreducible component $=4$
number of edges of $\left.P_{2}-\left(\operatorname{dim}\left(P_{2}\right)-1\right)\right)=6-(3-1)=4$

Degree Bound

Corollary

If P is centrally symmetric and centered at the origin, then we can improve the bounds to

$$
\begin{gathered}
\operatorname{deg}\left(q(x)-\frac{p(x)}{\|x\|^{2}}\right) \leq \# \frac{1}{2}\left(\text { vertices of } P \cap x^{\perp}\right) \\
\frac{1}{2}(\text { number of edges of } P-(\operatorname{dim}(P)-1)) .
\end{gathered}
$$

Degree Bound

Corollary

If P is centrally symmetric and centered at the origin, then we can improve the bounds to

$$
\begin{gathered}
\operatorname{deg}\left(q(x)-\frac{p(x)}{\|x\|^{2}}\right) \leq \# \frac{1}{2}\left(\text { vertices of } P \cap x^{\perp}\right) \\
\frac{1}{2}(\text { number of edges of } P-(\operatorname{dim}(P)-1)) .
\end{gathered}
$$

Example: $P_{1}=[-1,1]^{3}$
highest degree of irreducible component $=3$
$\frac{1}{2}\left(\right.$ number of edges of $\left.P_{1}-\left(\operatorname{dim}\left(P_{1}\right)-1\right)\right)=\frac{1}{2}(12-(3-1))=5>3$

Degree Bound

Corollary

If P is centrally symmetric and centered at the origin, then we can improve the bounds to

$$
\begin{array}{r}
\operatorname{deg}\left(q(x)-\frac{p(x)}{\|x\|^{2}}\right) \leq \# \frac{1}{2}\left(\text { vertices of } P \cap x^{\perp}\right) \\
\frac{1}{2}(\text { number of edges of } P-(\operatorname{dim}(P)-1)) .
\end{array}
$$

Example: $P_{1}=[-1,1]^{3}$
highest degree of irreducible component $=3$
$\frac{1}{2}\left(\right.$ number of edges of $\left.P_{1}-\left(\operatorname{dim}\left(P_{1}\right)-1\right)\right)=\frac{1}{2}(12-(3-1))=5>3$ $\operatorname{deg}\left(q(x)-\frac{p(x)}{\|x\|^{2}}\right)=\frac{1}{2}(\#$ vertices of a hexagon $)=3$

Degree Bound

Corollary

If P is centrally symmetric and centered at the origin, then we can improve the bounds to

$$
\begin{array}{r}
\operatorname{deg}\left(q(x)-\frac{p(x)}{\|x\|^{2}}\right) \leq \# \frac{1}{2}\left(\text { vertices of } P \cap x^{\perp}\right) \\
\frac{1}{2}(\text { number of edges of } P-(\operatorname{dim}(P)-1)) .
\end{array}
$$

Example: $P_{1}=[-1,1]^{3}$
highest degree of irreducible component $=3$
$\frac{1}{2}\left(\right.$ number of edges of $\left.P_{1}-\left(\operatorname{dim}\left(P_{1}\right)-1\right)\right)=\frac{1}{2}(12-(3-1))=5>3$ $\operatorname{deg}\left(q(x)-\frac{p(x)}{\|x\|^{2}}\right)=\frac{1}{2}(\#$ vertices of a hexagon $)=3$

Thank you!

Degree Bound

Corollary

If P is centrally symmetric and centered at the origin, then we can improve the bounds to

$$
\begin{array}{r}
\operatorname{deg}\left(q(x)-\frac{p(x)}{\|x\|^{2}}\right) \leq \# \frac{1}{2}\left(\text { vertices of } P \cap x^{\perp}\right) \\
\frac{1}{2}(\text { number of edges of } P-(\operatorname{dim}(P)-1)) .
\end{array}
$$

Example: $P_{1}=[-1,1]^{3}$
highest degree of irreducible component $=3$
$\frac{1}{2}\left(\right.$ number of edges of $\left.P_{1}-\left(\operatorname{dim}\left(P_{1}\right)-1\right)\right)=\frac{1}{2}(12-(3-1))=5>3$ $\operatorname{deg}\left(q(x)-\frac{p(x)}{\|x\|^{2}}\right)=\frac{1}{2}(\#$ vertices of a hexagon $)=3$

Thank you!

CASE STUDY: d-DIMENSIONAL CENTERED CUBE $[-1,1]^{d}$

Proposition (Berlow, B., Meroni, Shankar)

Let $P=[-1,1]^{d}$. Then the number of irreducible components of $I P$ of degree 1 is at least $2 d$.

Conjecture: This number is exactly $2 d$.
\Rightarrow many more non-linear pieces!

dim	\# chambers of H	degree bound	$\operatorname{deg}=1$	2	3	4	5
2	4	1	4				
3	14	5	6	8			
4	104	14	8	32	64		
5	1882	38	10	80	320	1472	

