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RADIAL FUNCTIONS AND STAR BODIES

A bounded set K is a star body if for every s ∈ K holds [0, s] ⊆ K .

The radial function of K is

ρK : Rd → R

x 7→ max(λ ∈ R | λx ∈ K).

Given a radial function ρ, we associate

K = {x ∈ Rd | ρ(x) ≥ 1}.

Definition
Let P be a polytope. Then the intersection body IP of P is given by
the radial function (restricted to the sphere)

ρIP (u) = vold−1(P ∩ u⊥)

for u ∈ Sd−1.
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IP IS NOT ALWAYS CONVEX

What can we say about IP ?

How does the boundary look like?

→ finitely many ”pieces”? Structure of pieces? Possible shapes?

Thereom 1 (Berlow, B., Meroni, Shankar)
IP is semialgebraic, i.e. a subset of Rd defined by finite unions and
intersections of polynomial inequalities.

Theorem 2 (Berlow, B., Meroni, Shankar)
The degree of the irreducible components of the algebraic
boundary of IP is bounded by

number of edges of P − (dim(P )− 1)).
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EXAMPLE: THE 3-CUBE

Let P = [−1, 1]3, x ∈ R3. Then Q = P ∩ x⊥ can have different shapes.

vertices of Q←→ edges of P

First question: Which subsets C ⊆ R3 have the following property:
∀x ∈ C : x⊥ intersects a fixed set of edges of P .

General idea: Use this to write the volume of P ∩ x⊥ in terms of
x ∈ R3.

4



EXAMPLE: THE 3-CUBE

Let P = [−1, 1]3, x ∈ R3. Then Q = P ∩ x⊥ can have different shapes.

vertices of Q←→ edges of P

First question: Which subsets C ⊆ R3 have the following property:
∀x ∈ C : x⊥ intersects a fixed set of edges of P .

General idea: Use this to write the volume of P ∩ x⊥ in terms of
x ∈ R3.

4



EXAMPLE: THE 3-CUBE

Let P = [−1, 1]3, x ∈ R3. Then Q = P ∩ x⊥ can have different shapes.

vertices of Q←→ edges of P

First question: Which subsets C ⊆ R3 have the following property:
∀x ∈ C : x⊥ intersects a fixed set of edges of P .

General idea: Use this to write the volume of P ∩ x⊥ in terms of
x ∈ R3.

4



EXAMPLE: THE 3-CUBE

Let P = [−1, 1]3, x ∈ R3. Then Q = P ∩ x⊥ can have different shapes.

vertices of Q←→ edges of P

First question: Which subsets C ⊆ R3 have the following property:
∀x ∈ C : x⊥ intersects a fixed set of edges of P .

General idea: Use this to write the volume of P ∩ x⊥ in terms of
x ∈ R3.

4



HYPERPLANE ARRANGEMENT H

H = {v⊥ | v is a vertex of P and v 6= 0}.

C max chamber of H ⇒ ∀x ∈ C : x⊥ intersects P in fixed set of edges

The polyhedral fan induced by H is the normal fan of the zonotope

Z(P ) =
∑

v vertex of P

[−v, v]

”Pieces” of ∂IP ←→ open chambers of H
←→ vertices of Z(P )

←→ facets of Z(P )◦

IP P H

Z(P ) Z(P )◦
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Z(P ) CAN HAVE MANY PS!

left: IP1 for P1 = [−1, 1]3

right: IP2 for P2 = conv
((−1

−1
−1

)
,
(−1

1
1

)
,
(

1
−1
1

)
,
(

1
1
−1

))
center: Z(P1)

◦ = Z(P2)
◦

⇒ The zonotope Z(P ) does not determine the polytope P or the
intersection body IP !
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THEOREM 1: IP IS SEMIALGEBRAIC

Lemma (Berlow, B., Meroni, Shankar)
Let C ⊆ H be an open chamber. Then there exist polynomials

p(x), q(x) ∈ R[x1, . . . , xd] such that for all x ∈ C holds

vold−1(P ∩ x⊥) =
p(x)

‖x‖q(x)
.

IP ∩ C = {x ∈ C | ρ(x) ≥ 1}

= {x ∈ C | p(x)

‖x‖2q(x)
≥ 1}

= {x ∈ C | ‖x‖2q(x)− p(x) ≤ 0}.

Thereom 1 (Berlow, B., Meroni, Shankar)
IP is semialgebraic, i.e. a subset of Rd defined by finite unions and
intersections of polynomial inequalities.
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THE ALGEBRAIC BOUNDARY ∂aIP

The algebraic boundary ∂aIP of IP is the R-Zariski closure of ∂IP .

Let H = {Ci | i ∈ I}. Then

∂aIP =
⋃
i∈I

V
(
qi −

pi
‖x‖2

)
︸ ︷︷ ︸
irreducible components

What are the degrees of the irreducible components?
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DEGREE BOUND
Theorem 2 (Berlow, B., Meroni, Shankar)

deg
(
q(x)− p(x)

∥x∥2

)
≤ # vertices of P ∩ x⊥.

Corollary
The degrees of the irreducible components of the algebraic
boundary of IP are bounded by

number of edges of P − (dim(P )− 1)).

Example: P1 = [−1, 1]3

highest degree of irreducible component = 3

number of edges of P1 − (dim(P1)− 1)) = 12− (3− 1) = 10 >> 3

P2 = conv
((−1

−1
−1

)
,
(−1

1
1

)
,
(

1
−1
1

)
,
(

1
1
−1

))
highest degree of irreducible component = 4

number of edges of P2 − (dim(P2)− 1)) = 6− (3− 1) = 4
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DEGREE BOUND

Corollary
If P is centrally symmetric and centered at the origin, then we can
improve the bounds to

deg
(
q(x)− p(x)

∥x∥2

)
≤ # 1

2 ( vertices of P ∩ x⊥)

1
2 (number of edges of P − (dim(P )− 1)) .

Example: P1 = [−1, 1]3

highest degree of irreducible component = 3

1
2 (number of edges of P1 − (dim(P1)− 1)) = 1

2 (12− (3− 1)) = 5 > 3

deg
(
q(x)− p(x)

∥x∥2

)
= 1

2 (# vertices of a hexagon) = 3

Thank you!
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CASE STUDY: d-DIMENSIONAL CENTERED CUBE [−1, 1]d

Proposition (Berlow, B., Meroni, Shankar)
Let P = [−1, 1]d. Then the number of irreducible components of IP
of degree 1 is at least 2d.

Conjecture: This number is exactly 2d.
⇒ many more non-linear pieces!

# chambers degree
dim of H bound deg = 1 2 3 4 5

2 4 1 4

3 14 5 6 8

4 104 14 8 32 64

5 1882 38 10 80 320 1472
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