Competitive Equilibrium and Lattice Polytopes

arXiv:2107.08813

MOR Seminar | University of Twente

05 October 2022

Marie-Charlotte Brandenburg

based on joint work with Christian Haase and Ngoc Mai Tran

Overview

- 1. First Example
- 2. Mathematical Model | Connections to Polytopes
- 3. Can we guarantee the existence of a competitive equilibrium? (Answer: yes, if $G=K_n$)

The cutlery auction at dinner time

Price for 1 item: 0

Price for 2 items: 1

The cutlery auction at dinner time

The cutlery auction at dinner time

0

Opinion of	Ø			
Willing to pay	0	0	1	$\mid 1 \mid$
Price charged	0	0	1	3
Profit	0	0	0	-2

Price for 1 item: 0

Price for 2 items: 1

The cutlery auction at dinner time

0

Opinion of	Ø			
Willing to pay	0	0	1	1
Price charged	0	0	1	3
Profit	0	0	0	-2

Price for 1 item: 0

Price for 2 items: 1

A lattice polytope is the convex hull of finitely many points

$$P = conv(v_1, ..., v_n) \text{ for } v_1, ..., v_n \in \mathbb{Z}^d$$

A lattice polytope is the convex hull of finitely many points

$$P = conv(v_1, ..., v_n) \text{ for } v_1, ..., v_n \in \mathbb{Z}^d$$

A lattice polytope is the convex hull of finitely many points

$$P = conv(v_1, ..., v_n) \text{ for } v_1, ..., v_n \in \mathbb{Z}^d$$

A lattice polytope is the convex hull of finitely many points

$$P = conv(v_1, ..., v_n) \text{ for } v_1, ..., v_n \in \mathbb{Z}^d$$

$$F = \{x \in P \mid \langle x, u \rangle \text{ maximal}\}$$

A lattice polytope is the convex hull of finitely many points

$$P = conv(v_1, ..., v_n) \text{ for } v_1, ..., v_n \in \mathbb{Z}^d$$

$$F = \{x \in P \mid \langle x, u \rangle \text{ maximal}\}$$

A lattice polytope is the convex hull of finitely many points

$$P = conv(v_1, ..., v_n) \text{ for } v_1, ..., v_n \in \mathbb{Z}^d$$

$$F = \{x \in P \mid \langle x, u \rangle \text{ maximal}\}$$

A lattice polytope is the convex hull of finitely many points

$$P = conv(v_1, ..., v_n) \text{ for } v_1, ..., v_n \in \mathbb{Z}^d$$

$$F = \{x \in P \mid \langle x, u \rangle \text{ maximal}\}$$

A lattice polytope is the convex hull of finitely many points

$$P = conv(v_1, ..., v_n) \text{ for } v_1, ..., v_n \in \mathbb{Z}^d$$

$$F = \{x \in P \mid \langle x, u \rangle \text{ maximal}\}$$

A lattice polytope is the convex hull of finitely many points

$$P = conv(v_1, ..., v_n) \text{ for } v_1, ..., v_n \in \mathbb{Z}^d$$

$$F = \{x \in P \mid \langle x, u \rangle \text{ maximal}\}$$

A lattice polytope is the convex hull of finitely many points

$$P = conv(v_1, ..., v_n) \text{ for } v_1, ..., v_n \in \mathbb{Z}^d$$

$$F = \{x \in P \mid \langle x, u \rangle \text{ maximal}\}$$

A lattice polytope is the convex hull of finitely many points

$$P = conv(v_1, ..., v_n) \text{ for } v_1, ..., v_n \in \mathbb{Z}^d$$

$$F = \{x \in P \mid \langle x, u \rangle \text{ maximal}\}$$

A lattice polytope is the convex hull of finitely many points

$$P = conv(v_1, ..., v_n) \text{ for } v_1, ..., v_n \in \mathbb{Z}^d$$

$$F = \{x \in P \mid \langle x, u \rangle \text{ maximal}\}$$

A lattice polytope is the convex hull of finitely many points

$$P = conv(v_1, ..., v_n) \text{ for } v_1, ..., v_n \in \mathbb{Z}^d$$

$$F = \{x \in P \mid \langle x, u \rangle \text{ maximal}\}$$

$$P + Q = \{x + y \mid x \in P, y \in Q\}$$

$$P + Q = \{x + y \mid x \in P, y \in Q\}$$

$$P + Q = \{x + y \mid x \in P, y \in Q\}$$

$$P + Q = \{x + y \mid x \in P, y \in Q\}$$

$$P + Q = \{x + y \mid x \in P, y \in Q\}$$

$$P + Q = \{x + y \mid x \in P, y \in Q\}$$

$$P + Q = \{x + y \mid x \in P, y \in Q\}$$

$$P + Q = \{x + y \mid x \in P, y \in Q\}$$

$$P + Q = \{x + y \mid x \in P, y \in Q\}$$

The graphical model and its polytope

[Candogan-Ozdaglar-Parillo '18]

The graphical model and its polytope

[Candogan-Ozdaglar-Parillo '18]

n=# types of goods, $a_i^*=\#$ items of type $i,\ a^*\in\mathbb{Z}^n_{\geq 0}$

[Candogan-Ozdaglar-Parillo '18]

n=# types of goods, $a_i^*=\#$ items of type $i,\ a^*\in\mathbb{Z}^n_{\geq 0}$ General assumptions:

- 1. Each bidder wants to buy ≤ 1 item per type.
- 2. Auctioneer wants to sell everything.

[Candogan-Ozdaglar-Parillo '18]

n=# types of goods, $a_i^*=\#$ items of type $i,\ a^*\in\mathbb{Z}^n_{\geq 0}$ General assumptions:

- 1. Each bidder wants to buy ≤ 1 item per type.
- 2. Auctioneer wants to sell everything.

$$G = ([n], E)$$
 graph,

[Candogan-Ozdaglar-Parillo '18]

n=# types of goods, $a_i^*=\#$ items of type $i,\ a^*\in\mathbb{Z}_{\geq 0}^n$ General assumptions:

- 1. Each bidder wants to buy ≤ 1 item per type.
- 2. Auctioneer wants to sell everything.

$$G=([n],E)$$
 graph, $G'\subseteq G$ induced subgraph. Define $\chi_{G'}\in\{0,1\}^{n+|E|}$ as

$$(\chi_{G'})_i = \begin{cases} 1 & \text{if } i \in V(G') \\ 0 & \text{if } i \notin V(G') \end{cases} \qquad (\chi_{G'})_{ij} = \begin{cases} 1 & \text{if } ij \in E(G') \\ 0 & \text{if } ij \notin E(G') \end{cases}$$

[Candogan-Ozdaglar-Parillo '18]

n=# types of goods, $a_i^*=\#$ items of type $i,\ a^*\in\mathbb{Z}^n_{\geq 0}$ General assumptions:

- 1. Each bidder wants to buy ≤ 1 item per type.
- 2. Auctioneer wants to sell everything.

$$G=([n],E)$$
 graph, $G'\subseteq G$ induced subgraph. Define $\chi_{G'}\in\{0,1\}^{n+|E|}$ as

$$(\chi_{G'})_i = \begin{cases} 1 & \text{if } i \in V(G') \\ 0 & \text{if } i \notin V(G') \end{cases} \qquad (\chi_{G'})_{ij} = \begin{cases} 1 & \text{if } ij \in E(G') \\ 0 & \text{if } ij \notin E(G') \end{cases}$$

$$\begin{array}{c} 1 \\ 2 \\ 0 \\ 12 \end{array} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

[Candogan-Ozdaglar-Parillo '18]

n=# types of goods, $a_i^*=\#$ items of type $i,\ a^*\in\mathbb{Z}^n_{\geq 0}$ General assumptions:

- 1. Each bidder wants to buy ≤ 1 item per type.
- 2. Auctioneer wants to sell everything.

$$G=([n],E)$$
 graph, $G'\subseteq G$ induced subgraph. Define $\chi_{G'}\in\{0,1\}^{n+|E|}$ as

$$(\chi_{G'})_i = \begin{cases} 1 & \text{if } i \in V(G') \\ 0 & \text{if } i \notin V(G') \end{cases} \qquad (\chi_{G'})_{ij} = \begin{cases} 1 & \text{if } ij \in E(G') \\ 0 & \text{if } ij \notin E(G') \end{cases}$$

 $P(G) = \operatorname{conv}(\chi_{G'} \mid G' \subseteq G \text{ induced})$

Bidder $b \in [m]$ communicates preferences to auctioneer

Bidder $b \in [m]$ communicates preferences to auctioneer

Bidder $b \in [m]$ communicates preferences to auctioneer

$$w^b = \begin{pmatrix} 3 \\ 5 \\ -6 \end{pmatrix}$$

$$v^{b}\begin{pmatrix} 0\\0\\0 \end{pmatrix} = 0, \quad v^{b}\begin{pmatrix} 1\\0\\0 \end{pmatrix} = 3,$$
$$v^{b}\begin{pmatrix} 0\\1\\0 \end{pmatrix} = 5, \quad v^{b}\begin{pmatrix} 1\\1\\1 \end{pmatrix} = 2$$

Bidder $b \in [m]$ communicates preferences to auctioneer

$$w^b = \begin{pmatrix} 3 \\ 5 \\ -6 \end{pmatrix}$$

$$v^{b}\begin{pmatrix} 0\\0\\0 \end{pmatrix} = 0, \quad v^{b}\begin{pmatrix} 1\\0\\0 \end{pmatrix} = 3,$$
$$v^{b}\begin{pmatrix} 0\\1\\0 \end{pmatrix} = 5, \quad v^{b}\begin{pmatrix} 1\\1\\1 \end{pmatrix} = 2$$

Bidder $b \in [m]$ communicates preferences to auctioneer

$$w^{b} = \begin{pmatrix} 3 \\ 5 \\ -6 \end{pmatrix}$$

$$\frac{3}{5}$$

$$\frac{5}{2}$$

$$v^{b}\begin{pmatrix} 0\\0\\0 \end{pmatrix} = 0, \quad v^{b}\begin{pmatrix} 1\\0\\0 \end{pmatrix} = 3,$$
$$v^{b}\begin{pmatrix} 0\\1\\0 \end{pmatrix} = 5, \quad v^{b}\begin{pmatrix} 1\\1\\1 \end{pmatrix} = 2$$

Auctioneer sets a price

Auctioneer sets a price

$$D(v^b, p) = \underset{a \in \text{vert}(P(G))}{\operatorname{argmax}} \{v^b(a) - \langle p, a \rangle\}$$

Auctioneer sets a price

$$D(v^b, p) = \underset{a \in \text{vert}(P(G))}{\operatorname{argmax}} \{v^b(a) - \langle p, a \rangle\}$$

$$w^b = \begin{pmatrix} 3 \\ 5 \\ -6 \end{pmatrix}$$

$$p = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$

a	$\left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right)$	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
	8			

Auctioneer sets a price

$$D(v^b, p) = \underset{a \in \text{vert}(P(G))}{\operatorname{argmax}} \{v^b(a) - \langle p, a \rangle\}$$

$$w^b = \begin{pmatrix} 3 \\ 5 \\ -6 \end{pmatrix}$$

$$p = \begin{pmatrix} 4\\4\\-2 \end{pmatrix}$$

a	$\left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right)$	$\left(\begin{array}{c} 1\\0\\0\end{array}\right)$	$\begin{pmatrix} 0\\1\\0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
$v^b(a) = \langle w^b, a \rangle$	0	3	5	2

Auctioneer sets a price

Auctioneer computes the *demand set* of bidder b at price $p \in \mathbb{R}^{n+|E|}$:

$$D(v^b, p) = \underset{a \in \text{vert}(P(G))}{\operatorname{argmax}} \{v^b(a) - \langle p, a \rangle\}$$

$$w^b = \begin{pmatrix} 3\\5\\-6 \end{pmatrix}$$

$$p = \begin{pmatrix} 4 \\ 4 \\ -2 \end{pmatrix}$$

a	$\left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right)$	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
$v^b(a) = \langle w^b, a \rangle$	0	3	15	2
$\langle p, a \rangle$	0	4	4	6

8

Auctioneer sets a price

Auctioneer computes the demand set of bidder b at price $p \in \mathbb{R}^{n+|E|}$:

$$D(v^b, p) = \underset{a \in \text{vert}(P(G))}{\operatorname{argmax}} \{v^b(a) - \langle p, a \rangle\}$$

$$D(v^b, p) = \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$$
$$w^b = \begin{pmatrix} 3 \\ 5 \\ -6 \end{pmatrix}$$
$$p = \begin{pmatrix} 4 \\ 4 \\ -2 \end{pmatrix}$$

a	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
$v^b(a) = \langle w^b, a \rangle$	0	3	5	2
$\langle p, a \rangle$	0	4	4	6
$v^b(a) - \langle p, a \rangle$	0	-1	1	-4

8

Auctioneer sets a price

$$D(v^b, p) = \underset{a \in \text{vert}(P(G))}{\operatorname{argmax}} \{v^b(a) - \langle p, a \rangle\}$$

$$D(v^b, p) = \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$$
$$w^b = \begin{pmatrix} 3 \\ 5 \\ -6 \end{pmatrix}$$
$$p = \begin{pmatrix} 4 \\ 4 \\ -2 \end{pmatrix}$$

a	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
$v^b(a) = \langle w^b, a \rangle$	0	3	5	2
$\langle p, a \rangle$	0	4	4	6
$v^b(a) - \langle p, a \rangle$	0	-1	1	-4

Auctioneer sets a price

$$D(v^{b}, p) = \underset{a \in \text{vert}(P(G))}{\operatorname{argmax}} \{v^{b}(a) - \langle p, a \rangle\}$$

$$a \in D(v^{b}, p) \iff \langle \begin{pmatrix} v^{a} \\ v^{b}(a) \end{pmatrix}, \begin{pmatrix} -p \\ 1 \end{pmatrix} \rangle \text{ maximal}$$

$$D(v^b, p) = \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$$
$$w^b = \begin{pmatrix} 3 \\ 5 \\ -6 \end{pmatrix}$$
$$p = \begin{pmatrix} 4 \\ 4 \\ -2 \end{pmatrix}$$

a	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
$v^b(a) = \langle w^b, a \rangle$	0	3	5	2
$\langle p, a \rangle$	0	4	4	6
$v^b(a) - \langle p, a \rangle$	0	-1	1	-4

Auctioneer sets a price

$$D(v^b, p) = \operatorname*{argmax}_{a \in \operatorname{vert}(P(G))} \{v^b(a) - \langle p, a \rangle\} = \operatorname{vert}(F^b) \text{ for some } F^b \preceq P(G)$$
$$a \in D(v^b, p) \iff \langle \left(\begin{smallmatrix} a \\ v^b(a) \end{smallmatrix}\right), \left(\begin{smallmatrix} -p \\ 1 \end{smallmatrix}\right) \rangle \text{ maximal}$$

$$D(v^b, p) = \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$$
$$w^b = \begin{pmatrix} 3 \\ 5 \\ -6 \end{pmatrix}$$
$$p = \begin{pmatrix} 4 \\ 4 \\ -2 \end{pmatrix}$$

a	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
$v^b(a) = \langle w^b, a \rangle$	0	3	5	2
$\langle p, a \rangle$	0	4	4	6
$v^b(a) - \langle p, a \rangle$	0	-1	1	-4

Auctioneer sets a price

$$D(v^b, p) = \operatorname*{argmax}_{a \in \operatorname{vert}(P(G))} \{v^b(a) - \langle p, a \rangle\} = \operatorname{vert}(F^b) \text{ for some } F^b \preceq P(G)$$
$$a \in D(v^b, p) \iff \langle \left(\begin{smallmatrix} a \\ v^b(a) \end{smallmatrix}\right), \left(\begin{smallmatrix} -p \\ 1 \end{smallmatrix}\right) \rangle \text{ maximal}$$

$$D(v^b, p) = \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$$

$$w^b = \begin{pmatrix} 3 \\ 5 \\ -6 \end{pmatrix}$$

$$p = \begin{pmatrix} 4 \\ 4 \\ -2 \end{pmatrix}$$

α	$\left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right)$	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1\\1\\1 \end{pmatrix}$
$v^b(a) = \langle w^b, a \rangle$			5	
$\langle p, a \rangle$	0	4	4	6
$v^b(a) - \langle p, a \rangle$			1	

Auctioneer sets a price

Auctioneer computes the demand set of bidder b at price $p \in \mathbb{R}^{n+|E|}$:

$$D(v^{b}, p) = \operatorname*{argmax}_{a \in \operatorname{vert}(P(G))} \{v^{b}(a) - \langle p, a \rangle\} = \operatorname{vert}(F^{b}) \text{ for some } F^{b} \leq P(G)$$
$$a \in D(v^{b}, p) \iff \langle \left(\begin{smallmatrix} a \\ v^{b}(a) \end{smallmatrix}\right), \left(\begin{smallmatrix} -p \\ 1 \end{smallmatrix}\right) \rangle \text{ maximal}$$

Auctioneer wants to find price $p \in \mathbb{R}^{n+|E|}$ and a distribution $a^b \in \text{vert}(P(G)), b \in [m]$ s.t.

$$D(v^b, p) = \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$$

$$w^b = \begin{pmatrix} 3 \\ 5 \\ -6 \end{pmatrix}$$

$$p = \begin{pmatrix} 4 \\ 4 \\ -2 \end{pmatrix}$$

a	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
$v^b(a) = \langle w^b, a \rangle$			5	
$\langle p, a \rangle$	0	4	4	6
$v^b(a) - \langle p, a \rangle$	0	-1	1	-4

Auctioneer sets a price

Auctioneer computes the demand set of bidder b at price $p \in \mathbb{R}^{n+|E|}$:

$$D(v^b, p) = \operatorname*{argmax}_{a \in \operatorname{vert}(P(G))} \{v^b(a) - \langle p, a \rangle\} = \operatorname{vert}(F^b) \text{ for some } F^b \preceq P(G)$$
$$a \in D(v^b, p) \iff \langle \left(\begin{smallmatrix} a \\ v^b(a) \end{smallmatrix}\right), \left(\begin{smallmatrix} -p \\ 1 \end{smallmatrix}\right) \rangle \text{ maximal}$$

Auctioneer wants to find price $p \in \mathbb{R}^{n+|E|}$ and a distribution $a^b \in \text{vert}(P(G)), b \in [m]$ s.t.

$$\forall b \in [m] \exists a^b \in D(v^b, p) : a = \sum_{b \in [m]} a^b \text{ and } a_i^* = a_i \ \forall i \in [n] \ \begin{pmatrix} \frac{1}{1} \\ \frac{1}{2} \end{pmatrix}$$

$$D(v^b, p) = \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$$

$$w^b = \begin{pmatrix} 3 \\ 5 \\ -6 \end{pmatrix}$$

$$p = \begin{pmatrix} 4 \\ 4 \\ 9 \end{pmatrix}$$

α	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
$v^b(a) = \langle w^b, a \rangle$			5	
$\langle p, a \rangle$	0	4	4	6
$v^b(a) - \langle p, a \rangle$	0	-1	1	-4

Auctioneer sets a price

Auctioneer computes the *demand set* of bidder b at price $p \in \mathbb{R}^{n+|E|}$:

$$D(v^{b}, p) = \operatorname*{argmax}_{a \in \operatorname{vert}(P(G))} \{v^{b}(a) - \langle p, a \rangle\} = \operatorname{vert}(F^{b}) \text{ for some } F^{b} \leq P(G)$$
$$a \in D(v^{b}, p) \iff \langle \left(\begin{smallmatrix} a \\ v^{b}(a) \end{smallmatrix}\right), \left(\begin{smallmatrix} -p \\ 1 \end{smallmatrix}\right) \rangle \text{ maximal}$$

Auctioneer wants to find price $p \in \mathbb{R}^{n+|E|}$ and a distribution $a^b \in \text{vert}(P(G)), b \in [m]$ s.t.

$$\forall \ b \in [m] \ \exists \ a^b \in D(v^b, p) : \underline{a} = \sum_{b \in [m]} \underline{a^b \text{ and } a_i^* = a_i \ \forall i \in [n]} \left(\begin{smallmatrix} 1 \\ 1 \\ 1 \end{smallmatrix} \right)$$
 all bidders are happy

$$D(v^b, p) = \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$$

$$w^b = \begin{pmatrix} 3 \\ 5 \\ -6 \end{pmatrix}$$

$$p = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$

α	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
$v^b(a) = \langle w^b, a \rangle$			5	
$\langle p, a \rangle$	0	4	4	6
$v^b(a) - \langle p, a \rangle$	0	-1	1	-4

Definitions

Let $\pi: mP \cap \mathbb{Z}^{n+|E|} \to \mathbb{Z}^n$ be the coordinate projection. (m = # bidders)

Definitions

Let $\pi: mP \cap \mathbb{Z}^{n+|E|} \to \mathbb{Z}^n$ be the coordinate projection. (m = # bidders)

Definition.

Given valuations $\{v^b \mid b \in [m]\}$, a competitive equilibrium exists if there exist

$$p \in \mathbb{R}^{n+|E|}, a \in \sum_{b \in [m]} D(v^b, p)$$
 such that $a \in \pi^{-1}(a^*)$ (i.e. $a_i^* = a_i \ \forall i \in [n]$).

Definitions

Let $\pi: mP \cap \mathbb{Z}^{n+|E|} \to \mathbb{Z}^n$ be the coordinate projection. (m = # bidders)

Definition.

Given valuations $\{v^b \mid b \in [m]\}$, a competitive equilibrium exists if there exist

$$p \in \mathbb{R}^{n+|E|}, a \in \sum_{b \in [m]} D(v^b, p)$$
 such that $a \in \pi^{-1}(a^*)$ (i.e. $a_i^* = a_i \ \forall i \in [n]$).

Definition.

A competitive equilibrium is guaranteed to exist if for any set of valuations $\{v^b \mid b \in [m]\}$ there exists $p \in \mathbb{R}^{n+|E|}, a \in \sum_{b \in [m]} D(v^b, p)$ such that $a \in \pi^{-1}(a^*)$.

and lattice polytopes

Definition.

A competitive equilibrium is guaranteed to exist if for any set of valuations $\{v^b \mid b \in [m]\}$ there exists $p \in \mathbb{R}^{n+|E|}, a \in \sum D(v^b, p)$ such that $a \in \pi^{-1}(a^*)$.

$$b \in [m]$$

and lattice polytopes

Definition.

A competitive equilibrium is guaranteed to exist if for any set of valuations

$$\{v^b \mid b \in [m]\}$$
 there exists $p \in \mathbb{R}^{n+|E|}, a \in \sum_{b \in [m]} D(v^b, p)$ such that $a \in \pi^{-1}(a^*)$.

Lemma (B.-Haase-Tran, '21+).

Let $a^* \in \mathbb{Z}_{>0}^n$ and $a \in \pi^{-1}(a^*)$. Then TFAE:

and lattice polytopes

Definition.

A competitive equilibrium is guaranteed to exist if for any set of valuations

$$\{v^b \mid b \in [m]\}$$
 there exists $p \in \mathbb{R}^{n+|E|}, a \in \sum_{b \in [m]} D(v^b, p)$ such that $a \in \pi^{-1}(a^*)$.

Lemma (B.-Haase-Tran, '21+).

Let $a^* \in \mathbb{Z}_{>0}^n$ and $a \in \pi^{-1}(a^*)$. Then TFAE:

a)
$$\forall \{v^b \mid b \in [m]\} \exists p \in \mathbb{R}^{n+|E|} : a \in \sum_{b \in [m]} D(v^b, p)$$

and lattice polytopes

Definition.

A competitive equilibrium is guaranteed to exist if for any set of valuations

$$\{v^b \mid b \in [m]\}$$
 there exists $p \in \mathbb{R}^{n+|E|}, a \in \sum_{b \in [m]} D(v^b, p)$ such that $a \in \pi^{-1}(a^*)$.

Lemma (B.-Haase-Tran, '21+).

Let $a^* \in \mathbb{Z}_{\geq 0}^n$ and $a \in \pi^{-1}(a^*)$. Then TFAE:

a)
$$\forall \{v^b \mid b \in [m]\} \exists p \in \mathbb{R}^{n+|E|} : a \in \sum_{b \in [m]} D(v^b, p)$$

b)
$$\forall F^1, \dots, F^m \leq P(G)$$
: if $a \in \sum_{b \in [m]} F^b$ then $a \in \sum_{b \in [m]} \operatorname{vert}(F^b)$

and lattice polytopes

Definition.

A competitive equilibrium is guaranteed to exist if for any set of valuations

$$\{v^b \mid b \in [m]\}$$
 there exists $p \in \mathbb{R}^{n+|E|}, a \in \sum_{b \in [m]} D(v^b, p)$ such that $a \in \pi^{-1}(a^*)$.

Lemma (B.-Haase-Tran, '21+).

Let $a^* \in \mathbb{Z}_{>0}^n$ and $a \in \pi^{-1}(a^*)$. Then TFAE:

a)
$$\forall \{v^b \mid b \in [m]\} \exists p \in \mathbb{R}^{n+|E|} : a \in \sum_{b \in [m]} D(v^b, p)$$

b)
$$\forall F^1, \dots, F^m \leq P(G)$$
: if $a \in \sum_{b \in [m]} F^b$ then $a \in \sum_{b \in [m]} \text{vert}(F^b)$

In particular, then a CE is guaranteed to exist.

Results for the complete graph K_n

Results for the complete graph K_n

Theorem (B.-Haase-Tran, '21+)

Let $a^* \in \mathbb{Z}_{>0}^n$. Then $\exists a \in \pi^{-1}(a^*)$ such that

$$\forall F^1, \dots, F^m \leq P(K_n) \text{ holds: if } a \in \sum_{b \in [m]} F^b \text{ then } a \in \sum_{b \in [m]} \text{vert}(F^b).$$

Results for the complete graph K_n

Theorem (B.-Haase-Tran, '21+)

Let $a^* \in \mathbb{Z}_{>0}^n$. Then $\exists a \in \pi^{-1}(a^*)$ such that

$$\forall F^1, \dots, F^m \leq P(K_n) \text{ holds: if } a \in \sum_{b \in [m]} F^b \text{ then } a \in \sum_{b \in [m]} \text{vert}(F^b).$$

Corollary

Let $G = K_n$ be the complete graph. For every auction* with quantities $a^* \in \mathbb{Z}_{\geq 0}^n$ of items, a competitive equilibrium is guaranteed to exists!

*with graphical valuations and graphical pricing on K_n

Other graphs where CE might not exist

Other graphs where CE might not exist

Example.

Other graphs

where CE might not exist

Example.

 $a^* = (1, 1, 1, 1, 1)$. There are edges e_1, e_2, e_3, e_4 of P(G) s.t.

$$\pi^{-1}(a^*) \cap \sum_{i=1}^4 e_i = \{(1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0)\}$$

and

$$\pi^{-1}(a^*) \cap \sum_{i=1}^4 \operatorname{vert}(e_i) = \emptyset.$$

Comparison: classical approach

Non-linear valuations on the cube

Thank you!

