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Overview

1. First Example
2. Mathematical Model | Connections to Polytopes

3. Can we guarantee the existence of a competitive equilibrium?
(Answer: yes, if G = K, )
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[Candogan-0Ozdaglar-Parillo ’18]

n = # types of goods, a; = # items of type i, a* € Z%
General assumptions:

1. Each bidder wants to buy < 1 item per type.
2. Auctioneer wants to sell everything.

G = ([n], E) graph, G’ C G induced subgraph. Define X’ € {0, 1371 5

L1 tievie) S L g e BGH)
)i = {o ifigve) Xe)u= {o if ij & E(G')
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Bidder b € [m] communicates preferences to auctioneer

. . b b
Valuation function v* : PNZ"HFl 5 R v’(a) = (w”, a) for some w® € R*IFI
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2. Auctioneer’s decision

Auctioneer sets a price
Auctioneer computes the demand set of bidder b at price p ¢ R*tIF:

D(v",p) = aevert(P(c)) 10 (a) = (p,a)} = vert(F") for some F” < P(G)
a € D(vb,p) = <(vbC(La)) , (_119)> maximal
Auctioneer wants to find price p € R™1IEl and a distribution a’ € vert(P(G)),b € [m]s.t.
Vbe[m]Ia e D(vb,p)lzla = Z o’ and af = a; Vi € [n]
all bidders are happy be[m] all items are sold
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{v” [ b€ [m]} there exists peRMIEl ¢ ¢ Z D(v°, p) such that a € 77 (a*)
be|m|

Lemma (B.-Haase-Tran, ’21+).
Let a* € Z%, and a € 7 *(a*). Then TFAE:

a)V{v®|bem]} IpeR"E . ¢¢ Z D(v°, p)
be|m]

b) vV F*,...,F™ < P(G): ifa € Z F’ then a € Z vert(F")
be|[m] be [m]
In particular, then a CE is guaranteed to exist.
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Results for the complete graph K,

Theorem (B.-Haase-Tran, ’21+)
Let o™ € Z%,.Then 3a € 7 '(a*)such that

VF',...,F™ < P(K) holds: if a € Z F’ then a € Z vert(F").
be|m] be [m]

Corollary

Let G = K|, be the complete graph. For every auction* with quantities a™ € Z%  of
items, a competitive equilibrium is guaranteed to exists!

*with graphical valuations and graphical pricing on K,
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Other graphs

where CE might not exist

Example.

a* = (1,1,1,1,1). There are edges eq,es,e3,¢e4 of P(G) s.t.

4
(@) N Y e ={(1,1,1,1, 0,0,0,0,0,0)}
1=1

and ,
T (a™) N Zvert(ei) — ().
i=1
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Comparison: classical approach

Non-linear valuations on the cube
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