Competitive Equilibrium always exists

Discrete Math Days 2022

04 July 2022

Marie-Charlotte Brandenburg

based on joint work with Christian Haase and Ngoc Mai Tran

The cutlery auction at dinner time

Price for 1 item: 0

Price for 2 items: 1

The cutlery auction at dinner time

The cutlery auction at dinner time

0

Opinion of	Ø			
Willing to pay	0	0	1	$\mid 1 \mid$
Price charged	0	0	1	3
Profit	0	0	0	-2

Price for 1 item: 0

Price for 2 items: 1

The cutlery auction at dinner time

0

0		0
	1	
1		1
	0	

Opinion of	Ø			
Willing to pay	0	0	1	1
Price charged	0	0	1	3
Profit	0	0	0	-2

Price for 1 item: 0

Price for 2 items: 1

[Candogan-Ozdaglar-Parillo '18]

[Candogan-Ozdaglar-Parillo '18]

n=# types of goods, $a_i^*=\#$ items of type $i,\ a^*\in\mathbb{Z}^n_{\geq 0}$

[Candogan-Ozdaglar-Parillo '18]

- 1. Each bidder wants to buy ≤ 1 item per type.
- 2. Auctioneer wants to sell everything.

[Candogan-Ozdaglar-Parillo '18]

- 1. Each bidder wants to buy ≤ 1 item per type.
- 2. Auctioneer wants to sell everything.

$$G = ([n], E)$$
 graph,

[Candogan-Ozdaglar-Parillo '18]

- 1. Each bidder wants to buy ≤ 1 item per type.
- 2. Auctioneer wants to sell everything.

$$G=([n],E)$$
 graph, $G'\subseteq G$ induced subgraph. Define $\chi_{G'}\in\{0,1\}^{n+|E|}$ as

$$(\chi_{G'})_i = \begin{cases} 1 & \text{if } i \in V(G') \\ 0 & \text{if } i \notin V(G') \end{cases} \qquad (\chi_{G'})_{ij} = \begin{cases} 1 & \text{if } ij \in E(G') \\ 0 & \text{if } ij \notin E(G') \end{cases}$$

[Candogan-Ozdaglar-Parillo '18]

- 1. Each bidder wants to buy ≤ 1 item per type.
- 2. Auctioneer wants to sell everything.

$$G=([n],E)$$
 graph, $G'\subseteq G$ induced subgraph. Define $\chi_{G'}\in\{0,1\}^{n+|E|}$ as

$$(\chi_{G'})_i = \begin{cases} 1 & \text{if } i \in V(G') \\ 0 & \text{if } i \notin V(G') \end{cases} \qquad (\chi_{G'})_{ij} = \begin{cases} 1 & \text{if } ij \in E(G') \\ 0 & \text{if } ij \notin E(G') \end{cases}$$

$$\begin{array}{c} 1 \\ 2 \\ 12 \end{array} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

[Candogan-Ozdaglar-Parillo '18]

n=# types of goods, $a_i^*=\#$ items of type $i,\ a^*\in\mathbb{Z}^n_{\geq 0}$ General assumptions:

- 1. Each bidder wants to buy ≤ 1 item per type.
- 2. Auctioneer wants to sell everything.

$$G=([n],E)$$
 graph, $G'\subseteq G$ induced subgraph. Define $\chi_{G'}\in\{0,1\}^{n+|E|}$ as

$$(\chi_{G'})_i = \begin{cases} 1 & \text{if } i \in V(G') \\ 0 & \text{if } i \notin V(G') \end{cases} \qquad (\chi_{G'})_{ij} = \begin{cases} 1 & \text{if } ij \in E(G') \\ 0 & \text{if } ij \notin E(G') \end{cases}$$

 $P(G) = \operatorname{conv}(\chi_{G'} \mid G' \subseteq G \text{ induced})$

Bidder $b \in [m]$ communicates preferences to auctioneer

Bidder $b \in [m]$ communicates preferences to auctioneer

Bidder $b \in [m]$ communicates preferences to auctioneer

$$w^b = \begin{pmatrix} 3 \\ 5 \\ -6 \end{pmatrix}$$

$$\frac{3}{5}$$

$$v^{b}\begin{pmatrix} 0\\0\\0 \end{pmatrix} = 0, \quad v^{b}\begin{pmatrix} 1\\0\\0 \end{pmatrix} = 3,$$
$$v^{b}\begin{pmatrix} 0\\1\\0 \end{pmatrix} = 5, \quad v^{b}\begin{pmatrix} 1\\1\\1 \end{pmatrix} = 2$$

Bidder $b \in [m]$ communicates preferences to auctioneer

$$w^b = \begin{pmatrix} 3 \\ 5 \\ -6 \end{pmatrix}$$

$$\frac{3}{5}$$

$$v^{b}\begin{pmatrix} 0\\0\\0 \end{pmatrix} = 0, \quad v^{b}\begin{pmatrix} 1\\0\\0 \end{pmatrix} = 3,$$
$$v^{b}\begin{pmatrix} 0\\1\\0 \end{pmatrix} = 5, \quad v^{b}\begin{pmatrix} 1\\1\\1 \end{pmatrix} = 2$$

Bidder $b \in [m]$ communicates preferences to auctioneer

$$w^{b} = \begin{pmatrix} 3 \\ 5 \\ -6 \end{pmatrix}$$

$$\frac{3}{5}$$

$$\frac{5}{2}$$

$$v^{b}\begin{pmatrix} 0\\0\\0 \end{pmatrix} = 0, \quad v^{b}\begin{pmatrix} 1\\0\\0 \end{pmatrix} = 3,$$
$$v^{b}\begin{pmatrix} 0\\1\\0 \end{pmatrix} = 5, \quad v^{b}\begin{pmatrix} 1\\1\\1 \end{pmatrix} = 2$$

Bidder $b \in [m]$ communicates preferences to auctioneer

Valuation function $v^b: P \cap \mathbb{Z}^{n+|E|} \to \mathbb{R}, \ v^b(a) = \langle w^b, a \rangle \text{ for some } w^b \in \mathbb{R}^{n+|E|}$

Auctioneer sets a price

$$w^{b} = \begin{pmatrix} 3 \\ 5 \\ -6 \end{pmatrix}$$

$$\frac{3}{5}$$

$$\frac{5}{2}$$

$$v^{b}\begin{pmatrix} 0\\0\\0 \end{pmatrix} = 0, \quad v^{b}\begin{pmatrix} 1\\0\\0 \end{pmatrix} = 3,$$
$$v^{b}\begin{pmatrix} 0\\1\\0 \end{pmatrix} = 5, \quad v^{b}\begin{pmatrix} 1\\1\\1 \end{pmatrix} = 2$$

Bidder $b \in [m]$ communicates preferences to auctioneer

Valuation function $v^b: P\cap \mathbb{Z}^{n+|E|}\to \mathbb{R}, \ v^b(a)=\langle w^b,a\rangle \ \text{for some} \ w^b\in \mathbb{R}^{n+|E|}$

Auctioneer sets a price

Auctioneer computes the demand set of bidder b at price $p \in \mathbb{R}^{n+|E|}$:

$$D(v^b, p) = \underset{a \in \text{vert}(P(G))}{\operatorname{argmax}} \{v^b(a) - \langle p, a \rangle\}$$

$$w^b = \begin{pmatrix} 3\\5\\-6 \end{pmatrix}$$

$$v^b(\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}) = 0, \quad v^b(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}) = 3,$$

$$v^{b}(\begin{pmatrix} 0\\1\\0 \end{pmatrix}) = 5, \quad v^{b}(\begin{pmatrix} 1\\1\\1 \end{pmatrix}) = 2$$

Bidder $b \in [m]$ communicates preferences to auctioneer

Valuation function $v^b: P \cap \mathbb{Z}^{n+|E|} \to \mathbb{R}$, $v^b(a) = \langle w^b, a \rangle$ for some $w^b \in \mathbb{R}^{n+|E|}$

Auctioneer sets a price

Auctioneer computes the demand set of bidder b at price $p \in \mathbb{R}^{n+|E|}$:

$$D(v^{b}, p) = \underset{a \in \text{vert}(P(G))}{\operatorname{argmax}} \{v^{b}(a) - \langle p, a \rangle\}$$

$$a \in D(v^{b}, p) \iff \langle \begin{pmatrix} v^{b}(a) \end{pmatrix}, \begin{pmatrix} -p \\ 1 \end{pmatrix} \rangle \text{ maximal}$$

$$w^b = \begin{pmatrix} 3 \\ 5 \\ -6 \end{pmatrix}$$

$$v^b\left(\left(\begin{smallmatrix}0\\0\\0\\0\end{smallmatrix}\right)\right) = 0, \quad v^b\left(\left(\begin{smallmatrix}1\\0\\0\\0\end{smallmatrix}\right)\right) = 3,$$

$$v^b\left(\begin{pmatrix} 0\\1\\0 \end{pmatrix}\right) = 5, \quad v^b\left(\begin{pmatrix} 1\\1\\1 \end{pmatrix}\right) = 2$$

Bidder $b \in [m]$ communicates preferences to auctioneer

Valuation function $v^b: P \cap \mathbb{Z}^{n+|E|} \to \mathbb{R}$, $v^b(a) = \langle w^b, a \rangle$ for some $w^b \in \mathbb{R}^{n+|E|}$

Auctioneer sets a price

Auctioneer computes the demand set of bidder b at price $p \in \mathbb{R}^{n+|E|}$:

$$D(v^b, p) = \underset{a \in \text{vert}(P(G))}{\operatorname{argmax}} \quad \{v^b(a) - \langle p, a \rangle\} = \text{vert}(F^b) \text{ for some } F^b \preceq P(G)$$

$$a \in D(v^b, p) \iff \langle \begin{pmatrix} v^b(a) \end{pmatrix}, \begin{pmatrix} -p \\ 1 \end{pmatrix} \rangle \text{ maximal}$$

$$\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

$$w^{b} = \begin{pmatrix} 3 \\ 5 \\ -6 \end{pmatrix} \qquad v^{b} (\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}) = 0, \quad v^{b} (\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}) = 3,$$

$$v^{b} (\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}) = 5, \quad v^{b} (\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}) = 2$$

Competitive equilibrium and lattice polytopes

and lattice polytopes

Definition.

A competitive equilibrium is guaranteed to exist if for any set of valuations

$$\{v^b\mid b\in[m]\}$$
 there exists $p\in\mathbb{R}^{n+|E|}, a\in\sum_{b\in[m]}D(v^b,p)$ such that $a_i^*=a_i\ \forall i\in[n]$.

and lattice polytopes

Definition.

A competitive equilibrium is guaranteed to exist if for any set of valuations

$$\{v^b\mid b\in[m]\}$$
 there exists $p\in\mathbb{R}^{n+|E|}, a\in\sum_{b\in[m]}D(v^b,p)$ such that $a_i^*=a_i\ \forall i\in[n]$.

Lemma (B.-Haase-Tran, '21+). $^{b\in[m]}$

Let $a^* \in \mathbb{Z}_{\geq 0}^n$ and $a \in \pi^{-1}(a^*)$. Then TFAE:

and lattice polytopes

Definition.

A competitive equilibrium is guaranteed to exist if for any set of valuations

$$\{v^b \mid b \in [m]\}$$
 there exists $p \in \mathbb{R}^{n+|E|}, a \in \sum_{b \in [m]} D(v^b, p)$ such that $a_i^* = a_i \ \forall i \in [n]$.

Lemma (B.-Haase-Tran, '21+). $^{b \in [m]}$

Let $a^* \in \mathbb{Z}_{\geq 0}^n$ and $a \in \pi^{-1}(a^*)$. Then TFAE:

a)
$$\forall \{v^b \mid b \in [m]\} \exists p \in \mathbb{R}^{n+|E|} : a \in \sum_{b \in [m]} D(v^b, p)$$

and lattice polytopes

Definition.

A competitive equilibrium is guaranteed to exist if for any set of valuations

$$\{v^b\mid b\in[m]\}$$
 there exists $p\in\mathbb{R}^{n+|E|}, a\in\sum_{b\in[m]}D(v^b,p)$ such that $a_i^*=a_i\ \forall i\in[n]$.

Lemma (B.-Haase-Tran, '21+). $^{b \in [m]}$

Let $a^* \in \mathbb{Z}_{\geq 0}^n$ and $a \in \pi^{-1}(a^*)$. Then TFAE:

a)
$$\forall \{v^b \mid b \in [m]\} \exists p \in \mathbb{R}^{n+|E|} : a \in \sum_{b \in [m]} D(v^b, p)$$

b)
$$\forall F^1, \dots, F^m \leq P(G)$$
: if $a \in \sum_{b \in [m]} F^b$ then $a \in \sum_{b \in [m]} \operatorname{vert}(F^b)$

and lattice polytopes

Definition.

A competitive equilibrium is guaranteed to exist if for any set of valuations

$$\{v^b\mid b\in[m]\}$$
 there exists $p\in\mathbb{R}^{n+|E|}, a\in\sum_{b\in[m]}D(v^b,p)$ such that $a_i^*=a_i\ \forall i\in[n]$.

Lemma (B.-Haase-Tran, '21+). $^{b\in[m]}$

Let $a^* \in \mathbb{Z}_{>0}^n$ and $a \in \pi^{-1}(a^*)$. Then TFAE:

a)
$$\forall \{v^b \mid b \in [m]\} \exists p \in \mathbb{R}^{n+|E|} : a \in \sum_{b \in [m]} D(v^b, p)$$

b)
$$\forall F^1, \dots, F^m \preceq P(G): \text{ if } a \in \sum_{b \in [m]} F^b \text{ then } a \in \sum_{b \in [m]} \text{vert}(F^b)$$
 In particular, then a CE is

In particular, then a CE is guaranteed to exist.

and lattice polytopes

Definition.

A competitive equilibrium is guaranteed to exist if for any set of valuations

$$\{v^b \mid b \in [m]\}$$
 there exists $p \in \mathbb{R}^{n+|E|}, a \in \sum_{l \in [-1]} D(v^b, p)$ such that $a_i^* = a_i \ \forall i \in [n]$.

Lemma (B.-Haase-Tran, '21+). $^{b \in [m]}$

Let $a^* \in \mathbb{Z}_{\geq 0}^n$ and $a \in \pi^{-1}(a^*)$. Then TFAE:

a)
$$\forall \{v^b \mid b \in [m]\} \exists p \in \mathbb{R}^{n+|E|} : a \in \sum_{b \in [m]} D(v^b, p)$$

b)
$$\forall F^1, \dots, F^m \preceq P(G)$$
: if $a \in \sum_{b \in S} F^b$ then $a \in \sum_{b \in S} \operatorname{vert}(F^b)$

In particular, then a CE is $b \in [m]$ guaranteed to exist.

$$b \in [m]$$

Points that are always in the upper convex hull of the lifted mP(G)

Results

Recall: $a_i^* = \#$ items of type i

Results

Recall: $a_i^* = \#$ items of type i

Theorem (B.-Haase-Tran, '21+)

Let $G = K_n$ be the complete graph.

- a) If $a^* \in \{0,1\}^n$ then CE is guaranteed to exist for all distributions of goods.
- b) If $a^* \in \mathbb{Z}_{>0}^n$. then CE is guaranteed to exist.

Results

Recall: $a_i^* = \#$ items of type i

Theorem (B.-Haase-Tran, '21+)

Let $G = K_n$ be the complete graph.

- a) If $a^* \in \{0,1\}^n$ then CE is guaranteed to exist for all distributions of goods.
- b) If $a^* \in \mathbb{Z}_{>0}^n$. then CE is guaranteed to exist.

Theorem (B.-Haase-Tran, '21+)

. Then CE is not guaranteed to exist. Let G = v_2 v_3 6

Thank you!

