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Geometry over the tropical semiring

• tropical polynomials  

• tropical hypersurfaces 

• tropical varieties

• tropical linear spaces 

• tropical polytopes

• tropical rank of a matrix

• ….

Connections e.g. to 

• Algebraic Geometry

• Optimization

• Economics

• Machine-Learning



CLASSICAL AND TROPICAL GEOMETRY

5

tropicalization

algebraic variety

V

tropical variety

trop(V )

„combinatorial 
shadow of “V



• polyhedral complex

• preserves important properties  
(e.g. dimension)

CLASSICAL AND TROPICAL GEOMETRY

5

tropicalization

algebraic variety

V

tropical variety

trop(V )

„combinatorial 
shadow of “V



• polyhedral complex

• preserves important properties  
(e.g. dimension)

• “lose” e.g. information about intersection 
with orthants

 signed tropicalization: recover this 
information
→

CLASSICAL AND TROPICAL GEOMETRY

5

tropicalization

algebraic variety

V

tropical variety

trop(V )

„combinatorial 
shadow of “V



• polyhedral complex

• preserves important properties  
(e.g. dimension)

• “lose” e.g. information about intersection 
with orthants

 signed tropicalization: recover this 
information
→

CLASSICAL AND TROPICAL GEOMETRY

5

tropicalization

algebraic variety

V

tropical variety

trop(V )

„combinatorial 
shadow of “V

If  and  is the „positive orthant“, what is ?V ⊆ Kd Kd
+ trop+(V ) := trop(V ∩ Kd

+)



classical algebraic variety:             V(⟨ f1, …, fn⟩) =
n

⋂
i=1

V( fi)

TROPICAL POSITIVITY: CHALLENGES

6



classical algebraic variety:             V(⟨ f1, …, fn⟩) =
n

⋂
i=1

V( fi)

tropicalization:                       trop(V(⟨ f1, …, fn⟩)) ⊆
n

⋂
i=1

trop(V( fi))

TROPICAL POSITIVITY: CHALLENGES

6



classical algebraic variety:             V(⟨ f1, …, fn⟩) =
n

⋂
i=1

V( fi)

tropicalization:                       trop(V(⟨ f1, …, fn⟩)) ⊆
n

⋂
i=1

trop(V( fi))

There exists a finite set  („tropical basis“) such thatB

trop(V(⟨ f1, …, fn⟩)) = ⋂
f∈B

trop(V( f ))

TROPICAL POSITIVITY: CHALLENGES

6



classical algebraic variety:             V(⟨ f1, …, fn⟩) =
n

⋂
i=1

V( fi)

tropicalization:                       trop(V(⟨ f1, …, fn⟩)) ⊆
n

⋂
i=1

trop(V( fi))

There exists a finite set  („tropical basis“) such thatB

trop(V(⟨ f1, …, fn⟩)) = ⋂
f∈B

trop(V( f ))

positive part:                        trop+(V(⟨ f1, …, fn⟩)) ⊆ ⋂
f∈B

trop+(V( f ))

TROPICAL POSITIVITY: CHALLENGES

6



classical algebraic variety:             V(⟨ f1, …, fn⟩) =
n

⋂
i=1

V( fi)

tropicalization:                       trop(V(⟨ f1, …, fn⟩)) ⊆
n

⋂
i=1

trop(V( fi))

There exists a finite set  („tropical basis“) such thatB

trop(V(⟨ f1, …, fn⟩)) = ⋂
f∈B

trop(V( f ))

positive part:                        trop+(V(⟨ f1, …, fn⟩)) ⊆ ⋂
f∈B

trop+(V( f ))

DEFINITION (B.-LOHO-SINN): A finite set  is a set of positive generators ifP

trop+(V(⟨ f1, …, fn⟩)) = ⋂
f∈P

trop+(V( f ))

TROPICAL POSITIVITY: CHALLENGES

6



PROPOSITION:
positive generators  tropical basis⟹
positive generators  tropical basis ⟸

DETERMINANTAL VARIETIES AND POSITIVE GENERATORS

7



PROPOSITION:
positive generators  tropical basis⟹
positive generators  tropical basis ⟸

Identification of positive generators:
• totally positive Grassmannian  

[SW21, ALS21]
• complete flag variety [Bor21]

DETERMINANTAL VARIETIES AND POSITIVE GENERATORS

7



PROPOSITION:
positive generators  tropical basis⟹
positive generators  tropical basis ⟸

Identification of positive generators:
• totally positive Grassmannian  

[SW21, ALS21]
• complete flag variety [Bor21]

DETERMINANTAL VARIETIES:
Vr

d×n = {A ∈ Kd×n ∣ rk(A) ≤ r}
I = ⟨(r + 1) × (r + 1) − minors⟩

 tropical determinantal varietytrop(Vr
d×n)

DETERMINANTAL VARIETIES AND POSITIVE GENERATORS

7



PROPOSITION:
positive generators  tropical basis⟹
positive generators  tropical basis ⟸

Identification of positive generators:
• totally positive Grassmannian  

[SW21, ALS21]
• complete flag variety [Bor21]

DETERMINANTAL VARIETIES:
Vr

d×n = {A ∈ Kd×n ∣ rk(A) ≤ r}
I = ⟨(r + 1) × (r + 1) − minors⟩

 tropical determinantal varietytrop(Vr
d×n)

 is the topicalization of matrices 
with positive entries, but
trop+(Vr

d×n)

 can have .A ∈ trop+(Vr
d×n) Aij ∈ ℝ

DETERMINANTAL VARIETIES AND POSITIVE GENERATORS

7



PROPOSITION:
positive generators  tropical basis⟹
positive generators  tropical basis ⟸

Identification of positive generators:
• totally positive Grassmannian  

[SW21, ALS21]
• complete flag variety [Bor21]

DETERMINANTAL VARIETIES:
Vr

d×n = {A ∈ Kd×n ∣ rk(A) ≤ r}
I = ⟨(r + 1) × (r + 1) − minors⟩

 tropical determinantal varietytrop(Vr
d×n)

 is the topicalization of matrices 
with positive entries, but
trop+(Vr

d×n)

 can have .A ∈ trop+(Vr
d×n) Aij ∈ ℝ

THEOREM (DSS05, CJR11, SHI13):

The -minors form a  
tropical basis of   

(r + 1) × (r + 1)
trop(Vr

d×n) ⟺
• , or r ≤ 2
• , orr + 1 = min(d, n)
•  and .r = 3 min(d, n) ≤ 4

DETERMINANTAL VARIETIES AND POSITIVE GENERATORS

7



PROPOSITION:
positive generators  tropical basis⟹
positive generators  tropical basis ⟸

Identification of positive generators:
• totally positive Grassmannian  

[SW21, ALS21]
• complete flag variety [Bor21]

DETERMINANTAL VARIETIES:
Vr

d×n = {A ∈ Kd×n ∣ rk(A) ≤ r}
I = ⟨(r + 1) × (r + 1) − minors⟩

 tropical determinantal varietytrop(Vr
d×n)

 is the topicalization of matrices 
with positive entries, but
trop+(Vr

d×n)

 can have .A ∈ trop+(Vr
d×n) Aij ∈ ℝ

THEOREM (DSS05, CJR11, SHI13):

The -minors form a  
tropical basis of   

(r + 1) × (r + 1)
trop(Vr

d×n) ⟺
• , or r ≤ 2
• , orr + 1 = min(d, n)
•  and .r = 3 min(d, n) ≤ 4

THEOREM (B.-LOHO-SINN):

The -minors form a set of 
positive generators if 

(r + 1) × (r + 1)

• , or r ≤ 2
• .r + 1 = d = n

 tropical point configurations→

DETERMINANTAL VARIETIES AND POSITIVE GENERATORS

7



classically:         columns of  points on -dim’l linear space in A ∈ Vr
d×n ⟹ A ↔ n r Kd

                                                                      points on (  - 1)-dim’l space in ↔ n r ℙKd−1

TROPICAL POINT CONFIGURATIONS

8



classically:         columns of  points on -dim’l linear space in A ∈ Vr
d×n ⟹ A ↔ n r Kd

                                                                      points on (  - 1)-dim’l space in ↔ n r ℙKd−1

tropically:   columns of    points on (  - 1)-dim’l tropical linear space in A ∈ trop(Vr
d×n) ⟹ A ↔ n r 𝕋ℙd−1

TROPICAL POINT CONFIGURATIONS

8



classically:         columns of  points on -dim’l linear space in A ∈ Vr
d×n ⟹ A ↔ n r Kd

                                                                      points on (  - 1)-dim’l space in ↔ n r ℙKd−1

tropically:   columns of    points on (  - 1)-dim’l tropical linear space in A ∈ trop(Vr
d×n) ⟹ A ↔ n r 𝕋ℙd−1

Rank 2: Points on tropical lines

TROPICAL POINT CONFIGURATIONS

8

2 3 4 5



classically:         columns of  points on -dim’l linear space in A ∈ Vr
d×n ⟹ A ↔ n r Kd

                                                                      points on (  - 1)-dim’l space in ↔ n r ℙKd−1

tropically:   columns of    points on (  - 1)-dim’l tropical linear space in A ∈ trop(Vr
d×n) ⟹ A ↔ n r 𝕋ℙd−1

Rank 2: Points on tropical lines

TROPICAL POINT CONFIGURATIONS

8

THEOREM (B.-LOHO-SINN):

  points form a „consecutive chain“ on a tropical lineA ∈ trop+(V2
d×n) ⟺

                           the ass. bicolored phylogenetic tree [MY09] is a caterpillar tree ⟺
Rank 3: Necessary conditions for A ∈ trop+(V3

d×n)

2 3 4 5



classically:         columns of  points on -dim’l linear space in A ∈ Vr
d×n ⟹ A ↔ n r Kd

                                                                      points on (  - 1)-dim’l space in ↔ n r ℙKd−1

tropically:   columns of    points on (  - 1)-dim’l tropical linear space in A ∈ trop(Vr
d×n) ⟹ A ↔ n r 𝕋ℙd−1

Rank 2: Points on tropical lines

TROPICAL POINT CONFIGURATIONS

8

THEOREM (B.-LOHO-SINN):

  points form a „consecutive chain“ on a tropical lineA ∈ trop+(V2
d×n) ⟺

                           the ass. bicolored phylogenetic tree [MY09] is a caterpillar tree ⟺
Rank 3: Necessary conditions for A ∈ trop+(V3

d×n)

POSITIVE NOT POSITIVE



9

TROPICAL GEOMETRY SEMIALGEBRAIC SETS

M. Brandenburg, S. Elia, and L. Zhang. “Multivariate volume, Ehrhart- and h*-polynomials of polytropes”. 
Journal of Symbolic Computation 144 (Jan. 2023) pp. 209-230.  

2

2

POLYHEDRAL 
GEOMETRY

TROPICAL POSITIVITY AND 
DETERMINANTAL VARIETIES

joint work with 

Georg Loho and Rainer Sinn

VOLUMES

INTERSECTION BODIES OF 
POLYTOPES

CORRELATED EQUILIBRIUM 
POLYTOPES

joint work with 

Benjamin Hollering and Irem Portakal

VOLUME POLYNOMIALS OF 
TROPICAL POLYTOPES

joint work with 

Sophia Elia and Leon Zhang

joint work with Katalin Berlow, 
Chiara Meroni, and Isabelle Shankar2



convex hull:               conv(v1, …, vn) = {∑n
i=1 λivi ∣ 0 ≤ λi ≤ 1, ∑n

i=1 λi = 1} ⊆ ℝd

tropical convex hull:  tconv(v1, …, vn) = {⊕n
i=1λivi ∣ ∞ ≥ λi ≥ 0, ⊕n

i=1 λi = 0} ⊆ 𝕋d

TROPICAL POLYTOPES

10



convex hull:               conv(v1, …, vn) = {∑n
i=1 λivi ∣ 0 ≤ λi ≤ 1, ∑n

i=1 λi = 1} ⊆ ℝd

tropical convex hull:  tconv(v1, …, vn) = {⊕n
i=1λivi ∣ ∞ ≥ λi ≥ 0, ⊕n

i=1 λi = 0} ⊆ 𝕋d

TROPICAL POLYTOPES

10



convex hull:               conv(v1, …, vn) = {∑n
i=1 λivi ∣ 0 ≤ λi ≤ 1, ∑n

i=1 λi = 1} ⊆ ℝd

tropical convex hull:  tconv(v1, …, vn) = {⊕n
i=1λivi ∣ ∞ ≥ λi ≥ 0, ⊕n

i=1 λi = 0} ⊆ 𝕋d

A polytrope is a tropical polytope which is also classically convex.

A polytrope is maximal if it has  vertices (as classical polytope).(2d
d )

 “building blocks” of tropical polytopes⟶

TROPICAL POLYTOPES

10



Polytropes are alcoved polytopes of type A: Let . Then


  

c ∈ ℝd2−d

Pc = {(y1, …, yd) ∈ ℝd ∣ yi − yj ≤ cij  for i, j ∈ [d], i ≠ j}

VOLUMES OF POLYTROPES

11



Polytropes are alcoved polytopes of type A: Let . Then


  

c ∈ ℝd2−d

Pc = {(y1, …, yd) ∈ ℝd ∣ yi − yj ≤ cij  for i, j ∈ [d], i ≠ j}

VOLUMES OF POLYTROPES

11

What is the volume of  in terms of ?

What is  in terms of ?

Pc c
|Pc ∩ ℤd | c



Polytropes are alcoved polytopes of type A: Let . Then


  

c ∈ ℝd2−d

Pc = {(y1, …, yd) ∈ ℝd ∣ yi − yj ≤ cij  for i, j ∈ [d], i ≠ j}

VOLUMES OF POLYTROPES

11

THEOREM:
There exists a polyhedral complex of cells 

 {c ∈ ℝd2−d ∣ Pc is maximal and has fixed combinatorial type}
such that 
•  within each cell, the volume is a polynomial in variables cij
•  within each cell, the number of lattice points a polynomial in variables cij

What is the volume of  in terms of ?

What is  in terms of ?

Pc c
|Pc ∩ ℤd | c



Polytropes are alcoved polytopes of type A: Let . Then


  

c ∈ ℝd2−d

Pc = {(y1, …, yd) ∈ ℝd ∣ yi − yj ≤ cij  for i, j ∈ [d], i ≠ j}

VOLUMES OF POLYTROPES

11

THEOREM:
There exists a polyhedral complex of cells 

 {c ∈ ℝd2−d ∣ Pc is maximal and has fixed combinatorial type}
such that 
•  within each cell, the volume is a polynomial in variables cij
•  within each cell, the number of lattice points a polynomial in variables cij

B.-ELIA-ZHANG: computation of all multivariate volume, Ehrhart and polynomials for 
polytropes of dimension 

h*−
≤ 4

What is the volume of  in terms of ?

What is  in terms of ?

Pc c
|Pc ∩ ℤd | c



[TRA17] Classification of combinatorial types of maximal polytropes of dim  ≤ 4

VOLUMES OF POLYTROPES

12

dimension 2 3 4 5
# combinatorial types 1 6 27 248 ?

≥



[TRA17] Classification of combinatorial types of maximal polytropes of dim  ≤ 4

[JS22] Duality: combinatorial types of maximal polytropes  central regular triangulations of ⟷ FPd

Fundamental polytope (Root polytope of type A):              
FPd = conv(ei − ej ∣ i, j ∈ [d])

VOLUMES OF POLYTROPES

12

dimension 2 3 4 5
# combinatorial types 1 6 27 248 ?

≥



[TRA17] Classification of combinatorial types of maximal polytropes of dim  ≤ 4

[JS22] Duality: combinatorial types of maximal polytropes  central regular triangulations of ⟷ FPd

Fundamental polytope (Root polytope of type A):              
FPd = conv(ei − ej ∣ i, j ∈ [d])

THEOREM (B.-ELIA-ZHANG):

If , then there is a bijection between coefficients of the volume polynomial (homogeneous, 
degree ) and faces in the regular triangulation of :

d = 3
3 FP3

VOLUMES OF POLYTROPES

12

dimension 2 3 4 5
# combinatorial types 1 6 27 248 ?

≥



[TRA17] Classification of combinatorial types of maximal polytropes of dim  ≤ 4

[JS22] Duality: combinatorial types of maximal polytropes  central regular triangulations of ⟷ FPd

Fundamental polytope (Root polytope of type A):              
FPd = conv(ei − ej ∣ i, j ∈ [d])

THEOREM (B.-ELIA-ZHANG):

If , then there is a bijection between coefficients of the volume polynomial (homogeneous, 
degree ) and faces in the regular triangulation of :

d = 3
3 FP3

                                                          vertex   variable ei − ej ⟷ cij

VOLUMES OF POLYTROPES

12

dimension 2 3 4 5
# combinatorial types 1 6 27 248 ?

≥



[TRA17] Classification of combinatorial types of maximal polytropes of dim  ≤ 4

[JS22] Duality: combinatorial types of maximal polytropes  central regular triangulations of ⟷ FPd

Fundamental polytope (Root polytope of type A):              
FPd = conv(ei − ej ∣ i, j ∈ [d])

THEOREM (B.-ELIA-ZHANG):

If , then there is a bijection between coefficients of the volume polynomial (homogeneous, 
degree ) and faces in the regular triangulation of :

d = 3
3 FP3

                                                          vertex   variable ei − ej ⟷ cij
                                          Degree of vertex   coefficient of ei − ej ⟷ c3

ij

VOLUMES OF POLYTROPES

12

dimension 2 3 4 5
# combinatorial types 1 6 27 248 ?

≥



[TRA17] Classification of combinatorial types of maximal polytropes of dim  ≤ 4

[JS22] Duality: combinatorial types of maximal polytropes  central regular triangulations of ⟷ FPd

Fundamental polytope (Root polytope of type A):              
FPd = conv(ei − ej ∣ i, j ∈ [d])

THEOREM (B.-ELIA-ZHANG):

If , then there is a bijection between coefficients of the volume polynomial (homogeneous, 
degree ) and faces in the regular triangulation of :

d = 3
3 FP3

                                                          vertex   variable ei − ej ⟷ cij
                                          Degree of vertex   coefficient of ei − ej ⟷ c3

ij

                                      edge   coefficient of conv(ei − ej, ek − el) ⟷ c2
ijckl

                      triangle   coefficient of conv(ei − ej, ek − el, es − et) ⟷ cijcklcst

VOLUMES OF POLYTROPES

12

dimension 2 3 4 5
# combinatorial types 1 6 27 248 ?

≥



VOLUMES OF POLYTROPES

13

2c3
12−3c2

12c13 + c3
13−3c2

12c14+6c12c13c14−3c2
13c14 + c3

21−3c2
13c23+6c13c14c23−3c2

14c23

−3c14c2
23−3c21c2

23 + c3
23−3c2

21c24+6c14c23c24+6c21c23c24−3c14c2
24−3c23c2

24 + c3
24−3c2

21c31

+6c21c24c31−3c2
24c31−3c24c2

31 + c3
31−3c2

12c32+6c12c14c32−3c2
14c32−3c2

31c32−3c14c2
32

+6c14c24c34+6c24c31c34+6c14c32c34+6c31c32c34−3c14c2
34−3c24c2

34−3c31c2
34−3c32c2

34+2c3
34

+6c21c31c41−3c2
31c41+6c31c32c41−3c2

32c41−3c21c2
41−3c32c2

41 + c3
41−3c2

12c42+6c12c13c42

−3c2
13c42+6c12c32c42+6c32c41c42−3c13c2

42−3c32c2
42−3c41c2

42 + c3
42−3c2

21c43+6c13c23c43

+6c21c23c43−3c2
23c43+6c21c41c43−3c2

41c43+6c13c42c43+6c41c42c43−3c13c2
43−3c21c2

43

−3c42c2
43 + c3

43 .

e1 − e2 e1 − e4

e3 − e2 e3 − e4



VOLUMES OF POLYTROPES

13

2c3
12−3c2

12c13 + c3
13−3c2

12c14+6c12c13c14−3c2
13c14 + c3

21−3c2
13c23+6c13c14c23−3c2

14c23

−3c14c2
23−3c21c2

23 + c3
23−3c2

21c24+6c14c23c24+6c21c23c24−3c14c2
24−3c23c2

24 + c3
24−3c2

21c31

+6c21c24c31−3c2
24c31−3c24c2

31 + c3
31−3c2

12c32+6c12c14c32−3c2
14c32−3c2

31c32−3c14c2
32

+6c14c24c34+6c24c31c34+6c14c32c34+6c31c32c34−3c14c2
34−3c24c2

34−3c31c2
34−3c32c2

34+2c3
34

+6c21c31c41−3c2
31c41+6c31c32c41−3c2

32c41−3c21c2
41−3c32c2

41 + c3
41−3c2

12c42+6c12c13c42

−3c2
13c42+6c12c32c42+6c32c41c42−3c13c2

42−3c32c2
42−3c41c2

42 + c3
42−3c2

21c43+6c13c23c43

+6c21c23c43−3c2
23c43+6c21c41c43−3c2

41c43+6c13c42c43+6c41c42c43−3c13c2
43−3c21c2

43

−3c42c2
43 + c3

43 .

e1 − e2 e1 − e4

e3 − e2 e3 − e4

Coefficient of            c3
ij = 7 − deg(ei − ej)



VOLUMES OF POLYTROPES

13

2c3
12−3c2

12c13 + c3
13−3c2

12c14+6c12c13c14−3c2
13c14 + c3

21−3c2
13c23+6c13c14c23−3c2

14c23

−3c14c2
23−3c21c2

23 + c3
23−3c2

21c24+6c14c23c24+6c21c23c24−3c14c2
24−3c23c2

24 + c3
24−3c2

21c31

+6c21c24c31−3c2
24c31−3c24c2

31 + c3
31−3c2

12c32+6c12c14c32−3c2
14c32−3c2

31c32−3c14c2
32

+6c14c24c34+6c24c31c34+6c14c32c34+6c31c32c34−3c14c2
34−3c24c2

34−3c31c2
34−3c32c2

34+2c3
34

+6c21c31c41−3c2
31c41+6c31c32c41−3c2

32c41−3c21c2
41−3c32c2

41 + c3
41−3c2

12c42+6c12c13c42

−3c2
13c42+6c12c32c42+6c32c41c42−3c13c2

42−3c32c2
42−3c41c2

42 + c3
42−3c2

21c43+6c13c23c43

+6c21c23c43−3c2
23c43+6c21c41c43−3c2

41c43+6c13c42c43+6c41c42c43−3c13c2
43−3c21c2

43

−3c42c2
43 + c3

43 .

e1 − e2 e1 − e4

e3 − e2 e3 − e4

Coefficient of            c3
ij = 7 − deg(ei − ej)

Coefficient of  cijcklcst = {6 if conv(ei − ej, ek − el, es − et) is a triangle

0 otherwise



VOLUMES OF POLYTROPES

13

2c3
12−3c2

12c13 + c3
13−3c2

12c14+6c12c13c14−3c2
13c14 + c3

21−3c2
13c23+6c13c14c23−3c2

14c23

−3c14c2
23−3c21c2

23 + c3
23−3c2

21c24+6c14c23c24+6c21c23c24−3c14c2
24−3c23c2

24 + c3
24−3c2

21c31

+6c21c24c31−3c2
24c31−3c24c2

31 + c3
31−3c2

12c32+6c12c14c32−3c2
14c32−3c2

31c32−3c14c2
32

+6c14c24c34+6c24c31c34+6c14c32c34+6c31c32c34−3c14c2
34−3c24c2

34−3c31c2
34−3c32c2

34+2c3
34

+6c21c31c41−3c2
31c41+6c31c32c41−3c2

32c41−3c21c2
41−3c32c2

41 + c3
41−3c2

12c42+6c12c13c42

−3c2
13c42+6c12c32c42+6c32c41c42−3c13c2

42−3c32c2
42−3c41c2

42 + c3
42−3c2

21c43+6c13c23c43

+6c21c23c43−3c2
23c43+6c21c41c43−3c2

41c43+6c13c42c43+6c41c42c43−3c13c2
43−3c21c2

43

−3c42c2
43 + c3

43 .

e1 − e2 e1 − e4

e3 − e2 e3 − e4

Coefficient of            c3
ij = 7 − deg(ei − ej)

Coefficient of  cijcklcst = {6 if conv(ei − ej, ek − el, es − et) is a triangle

0 otherwise

Coefficient of      cijc2
kl =

−3 if conv(ei − ej, ek − el) is an edge of a square

and ei − ej incident to triangulating edge

0 otherwise



14

TROPICAL GEOMETRY SEMIALGEBRAIC SETS

3

K. Berlow, M. Brandenburg, C. Meroni, and I. Shankar. “Intersection Bodies of Polytopes”. Beiträge zur Algebra und   
 Geometrie 63.2 (June 2022) pp. 419-439. 

 M. Brandenburg and C. Meroni. Intersection Bodies of Polytopes: Translations and Convexity. 2023. arXiv: 2302.11764

3

VOLUMES

VOLUME POLYNOMIALS OF 
TROPICAL POLYTOPES

joint work with 

Sophia Elia and Leon Zhang

INTERSECTION BODIES OF 
POLYTOPES

joint work with Katalin Berlow, 
Chiara Meroni, and Isabelle Shankar

TROPICAL POSITIVITY AND 
DETERMINANTAL VARIETIES

joint work with 

Georg Loho and Rainer Sinn

CORRELATED EQUILIBRIUM 
POLYTOPES

POLYHEDRAL 
GEOMETRY

joint work with 

Benjamin Hollering and Irem Portakal

3



INTERSECTION BODIES OF POLYTOPES

15

DEFINITION:


The intersection body of  is  , where . P ⊆ ℝd IP = {x ∈ ℝd ∣ ρ(x) ≥ 1} ρ(x) =
1

∥x∥
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cube

[−1,1]3

cube

[0,1]3 icosahedron

DEFINITION:


The intersection body of  is  , where . P ⊆ ℝd IP = {x ∈ ℝd ∣ ρ(x) ≥ 1} ρ(x) =
1

∥x∥
vol(P ∩ x⊥)

Can we describe the boundary structure of ?IP



THEOREM (BERLOW-B.-MERONI-SHANKAR):

There exists a central hyperplane arrangement  such that 
within each chamber  of ,  is a rational function in 
variables  :

ℋ(P)
C ℋ(P) ρ(x)

x1, …, xd

  for .ρ(x) =
1

∥x∥
vol(P ∩ x⊥) =

pC(x)
qC(x)

x ∈ C
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There exists a central hyperplane arrangement  such that 
within each chamber  of ,  is a rational function in 
variables  :

ℋ(P)
C ℋ(P) ρ(x)

x1, …, xd

  for .ρ(x) =
1

∥x∥
vol(P ∩ x⊥) =

pC(x)
qC(x)

x ∈ C

COROLLARY:
The intersection body of a polytope is a semialgebraic set, 

i.e. a subset of  defined by finite unions and intersections of 
polynomial inequalities.

ℝd
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How does  behave under translation of  by a vector ?IP P t ∈ ℝd
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How does  behave under translation of  by a vector ?IP P t ∈ ℝd



translation rotation of hyperplanes in P + t ↔ ℋ(P + t)

THEOREM (B.-MERONI):

There exists an affine hyperplane arrangement  in the space of translations such that ℒ(P)
• within each region of , the combinatorics of  is preserved, and ℒ(P) ℋ(P + t)
•  is a piecewise rational function in variables ρ x1, …, xd, t1, …, td :

1
∥x∥

vol((P + t) ∩ x⊥) =
pC(t)(x, t)
qC(t)(x, t)

INTERSECTION BODIES OF TRANSLATIONS

18

How does  behave under translation of  by a vector ?IP P t ∈ ℝd
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For which  is  convex ?t ∈ ℝd I(P + t)



THEOREM (B.-MERONI):

Let  be a polygon. Then  is convex if and only ifP ⊂ ℝ2 IP
• , orP = − P
• the origin is the midpoint of an edge and  is convexP ∪ −P
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THEOREM (B.-MERONI):

Let  be a polygon. Then  is convex if and only ifP ⊂ ℝ2 IP
• , orP = − P
• the origin is the midpoint of an edge and  is convexP ∪ −P

COROLLARY:

Let . Then , and    is a parallelogram.k = |{t ∈ ℝ2 ∣ I(P + t) is convex} | k ≤ 5 k = 5 ⟺ P

TRANSLATIONS AND CONVEXITY

20

For which  is  convex ?t ∈ ℝd I(P + t)
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   for each player  deviating from recommendation does not increase expected payoff
p ∈ Δd1⋅…⋅dn−1
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Idea: Third party draws recommendation with probability pj1…jn

 is a correlated equilibrium  
   for each player  deviating from recommendation does not increase expected payoff
p ∈ Δd1⋅…⋅dn−1
⟺ i ∈ [n],

The set of correlated equilibria of a game is given by linear inequalities 
  correlated equilibrium polytope → PG
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The set of correlated equilibria is given by


 and 


   for all  and .


pj1…jn ≥ 0 for ji ∈ [di], i ∈ [n],  and ∑d1
j1=1 ⋯∑dn

jn=1 pj1…jn = 1

∑d1
j1=1 ⋯ ̂∑di

ji=1 ⋯∑dn
jn=1 (X(i)

j1⋯ji−1kji+1⋯jn − X(i)
j1⋯ji−1lji+1⋯, jn) pj1⋯ji−1kji+1⋯jn ≥ 0 k, l ∈ [di] i ∈ [n]
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Region of full-dimensionality: subset of payoff space

THEOREM (B.-HOLLERING-PORTAKAL)
The region of full-dimensionality forms a semialgebraic set (and can be explicitly described).
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Region of full-dimensionality: subset of payoff space

THEOREM (B.-HOLLERING-PORTAKAL)
The region of full-dimensionality forms a semialgebraic set (and can be explicitly described).

THEOREM (B.-HOLLERING-PORTAKAL)
There exists a subdivision of the payoff space into semialgebraic sets (“oriented matroid strata”), 
such that within each cell the combinatorial type of  is fixed.PG
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THEOREM (CA03)
Let  be a game. Then  is eitherG (2 × 2)− PG
• a point, or
• dimensional (full-dimensional) bipyramid 
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PROPOSITION (B.-HOLLERING-PORTAKAL):
For games, there are at least 

 full-dimensional combinatorial types.
(2 × 2 × 2)−
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THEOREM (CA03)
Let  be a game. Then  is eitherG (2 × 2)− PG
• a point, or
• dimensional (full-dimensional) bipyramid 

over a triangle.
3−

PROPOSITION (B.-HOLLERING-PORTAKAL):
For games, there are at least 

 full-dimensional combinatorial types.
(2 × 2 × 2)−

14 949

THEOREM (B.-HOLLERING-PORTAKAL)
Let  be a game. Then  is eitherG (2 × 3)− PG
• a point, or
• a bipyramid over a triangle, or
• dimensional (full-dimensional) and of a 

unique combinatorial type.
5−
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STARSHIP CRITERION (B.-LOHO-SINN):


the configuration of points on a tropical 
plane does not contain a starship.


Rank 2  no 


Rank 3  no starship


Rank 4: There are examples of  


such that the rank- -analogue of           occurs.

A ∈ trop+(V3
d×n) ⟹

⟹

⟹
k ≥ A ∈ trop+(Vk

d×n)

k

STARSHIP CRITERION
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Point configurations
Rank 3

Recall : A tropical plane is a 2 -dimensional polyhedral complex
Definition : A point configuration of 3 points foams a starship on a tropical plane

if they lie on 3 distinct 2 -dimensional faces ,
"
'
-
-
.
.

.
.

which intersect in an unbounded 1 - dimensional face
.

.

.

.

"

"
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↑
2d-analogue of¥rank-3 analogue of



THEOREM (B.-ELIA-ZHANG):

In the 8855-dimensional space of homogenous 
polynomials of degree , the  volume 
polynomials span a -dimensional affine subspace.

4 27 248
70

VOLUME POLYNOMIALS OF POLYTROPES
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Regular triangulation of FP3
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