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'M. Brandenburg, G. Loho, and R. Sinn. “Tropical Positivity and Determinantal Varieties”. To appear in
Algebraic Combinatorics (2023).
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Tropical Semiring (I, ,® )= (R U {o0}, min, +)
a @ b = min(a, b)

a®@b=a+b>b
Geometry over the tropical semiring Connections e.g. to
* tropical polynomials » Algebraic Geometry
* tropical hypersurfaces » Optimization
* tropical varieties « Economics
* tropical linear spaces  Machine-Learning

* tropical polytopes

* tropical rank of a matrix




CLASSICAL AND TROPICAL GEOMETRY

A

/\ tropicalization
>

/ :
-

algebraic variety
1%

N

tropical variety
trop(V)

,combinatorial
shadow of V*



CLASSICAL AND TROPICAL GEOMETRY

A

/\ tropicalization
>

/ :
-

algebraic variety
1%

» polyhedral complex

* preserves important properties
(e.g. dimension)

N

tropical variety
trop(V)

,combinatorial
shadow of V*



CLASSICAL AND TROPICAL GEOMETRY

A

/\ tropicalization
>

/ :
-

algebraic variety
vV

» polyhedral complex

* preserves important properties
(e.g. dimension)

tropical variety
trop(V)

N

,combinatorial
shadow of V*

» “lose” e.g. information about intersection

with orthants

— signed tropicalization: recover this

information



%
%A
A
s
4
)

CLASSICAL AND TROPICAL GEOMETRY

/ tropicalization »combinatorial
—_ " > shadow of V*
algebraic variety tropical variety
1% trop(V)
» polyhedral complex » “lose” e.g. information about intersection

* preserves important properties with orthants

(e.g. dimension) — signed tropicalization: recover this
information

IfV C K% and Kf is the ,positive orthant®, what is trop™(V') := trop(V N Kfrl)?
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TROPICAL POSITIVITY: CHALLENGES

classical algebraic variety: VI fis - f) = ﬂ V()
i=1
tropicalization: trop(V({f}, ... [,))) € ﬂ trop(V(f3))
i=1

There exists a finite set B (,tropical basis") such that

trop(V({fi, ---,.[,))) = ﬂ trop(V(f))

feB
positive part: trop"(V({fi, ---» [,,))) C ﬂ trop™(V(f))
feB
DEFINITION (B.-LOHO-SINN): A finite set P is a set of positive generators if

trop* (V((fi» ... ;) = [ | trop*(V(f)

fep
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PROPOSITION: THEOREM (DSS05, CJR11, SHI13):
positive generators =~ tropical basis The (r + 1) X (¥ + 1)-minors form a
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DETERMINANTAL VARIETIES AND POSITIVE GENERATORS

PROPOSITION:
positive generators =& tropical basis

positive generators <& tropical basis

|dentification of positive generators:

» totally positive Grassmannian
[SW21, ALS21]

« complete flag variety [Bor21]

I ={A e K| rk(A) < r}

dXxn
I={((r+1)X(r+1)— minors)
trop(V,.,)
trop™ (V). ) is the topicalization of matrices
with positive entries, but
A € trop™(V},,) can have A;; € R.

THEOREM (DSS05, CJR11, SHI13):

The (r + 1) X (r + 1)-minors form a
of trop(V), ) <

e r <2, or

« r+ 1 = min(d, n), or

« r =3 and min(d,n) < 4.

THEOREM (B.-LOHO-SINN):

The (r + 1) X (r + 1)-minors form a set of
if

e r <2, or

er+1=d=n.

— tropical point configurations
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TROPICAL POINT CONFIGURATIONS
classically: A €V, = columns of A <> n points on r-dim’l linear space in K¢
< n points on (r - 1)-dim’l space in PK9~!
tropically: A € trop(V), ) = columns of A <> n points on (r - 1)-dim’l tropical linear space in Tpd-!

Rank 2: Points on tropical lines
NOT POSITIVE

P S

THEOREM (B.-LOHO-SINN):

A€ trop+(V§Xn) <= points form a ,consecutive chain“ on a tropical line

< the ass. bicolored phylogenetic tree [MYQ09] is a caterpillar tree

Rank 3: Necessary conditions for A € trop+(V§Xn)
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2M. Brandenburg, S. Elia, and L. Zhang. “Multivariate volume, Ehrhart- and A*-polynomials of polytropes”.
Journal of Symbolic Computation 144 (Jan. 2023) pp. 209-230.
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TROPICAL POLYTOPES

convex hull: conv(vy, ..., V,) = {Z?=1’1ivi | 0<A4 <1, Z;;l/li =1} CR?
tropical convex hull: tconv(vy, ...,v,) = {@LAv. |00 >1,>0,®L, A =0} CT¢
A polytrope is a tropical polytope which is also classically convex.

A polytrope is maximal if it has < p ) vertices (as classical polytope).

— “building blocks” of tropical polytopes

a

/

10
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Polytropes are alcoved polytopes of type A: Let ¢ € IRdz‘d. Then
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VOLUMES OF POLYTROPES

Polytropes are Let c € R4 Then
P.={(,....,y) € R?| yi—y; <¢ fori,j€ld],i #j}

What is the volume of P. in terms of ¢?
What is | P. N Z%| in terms of c?

THEOREM:

There exists a polyhedral complex of cells

{c e RA*~d | P.is maximal and has fixed combinatorial type }

such that
. within each cell, the volume is a polynomial in variables Cij

. within each cell, the number of lattice points a polynomial in variables Cjj




VOLUMES OF POLYTROPES

Polytropes are Let c € R4 Then
P.={(,....,y) € R?| yi—y; <¢ fori,j€ld],i #j}

What is the volume of P. in terms of ¢?
What is | P. N Z%| in terms of c?

THEOREM:

There exists a polyhedral complex of cells

{c e RA*~d | P.is maximal and has fixed combinatorial type }
such that

. within each cell, the volume is a polynomial in variables Cij

. within each cell, the number of lattice points a polynomial in variables Cjj

B.-ELIA-ZHANG: computation of all multivariate volume, Ehrhart and A#*—polynomials for
polytropes of dimension <4
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[TRA17] Classification of combinatorial types of maximal polytropes of dim < 4

# combinatorial types 1 27 248 ?

[JS22] Duality: combinatorial types of maximal polytropes «— central regular triangulations of FP,

Fundamental polytope (Root polytope of type A):
FP;=conv(e;— ¢ | i,j € [d])
THEOREM (B.-ELIA-ZHANG):

If d = 3, then there is a bijection between coefficients of the volume polynomial (homogeneous,
degree 3) and faces in the regular triangulation of FP;:

vertex ¢; — ¢; «— variable ¢;;
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VOLUMES OF POLYTROPES

[TRA17] Classification of combinatorial types of maximal polytropes of dim < 4

dimension 2 3 4 >5
# combinatorial types 1 6 27 248 ?

[JS22] Duality: combinatorial types of maximal polytropes «— central regular triangulations of FP,

FP;=conv(e;— ¢ | i,j € [d])

THEOREM (B.-ELIA-ZHANG):

If d = 3, then there is a between of the volume polynomial (homogeneous,
degree 3) and in the regular triangulation of FP;:
vertex ¢; — ¢; «— variable ¢;;

Degree of vertex ¢; — ¢; «— coefficient of cg
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VOLUMES OF POLYTROPES

[TRA17] Classification of combinatorial types of maximal polytropes of dim < 4

dimension 2 3 4 >5
# combinatorial types 1 6 27 248 ?

[JS22] Duality: combinatorial types of maximal polytropes «— central regular triangulations of FP,

FP;=conv(e;— ¢ | i,j € [d])

THEOREM (B.-ELIA-ZHANG):

If d = 3, then there is a between of the volume polynomial (homogeneous,
degree 3) and in the regular triangulation of FP;:
vertex ¢; — ¢; «— variable ¢;;

Degree of vertex ¢; — ¢; «— coefficient of cg

edge conv(e; — ¢;, ¢, — ¢;) «— coefficient of cl.Jz.ckl

triangle conv(e; — ¢;, ¢, — ¢, e, — ¢,) «— coefficient of ¢;;cy,cy, .



VOLUMES OF POLYTROPES
3 2 3 2 2 3 2 2
21— 3013 + €3 3¢15C14 0C12€13C14= 3¢15C14 + €31 3C13003+ 0€13014C3— 3¢5
2 2 3 2 2 2 3 2
—3C14Cy3—3C)1Ch5 + Ci3—3C51Co4+0C14Ca3Co4+0C51Ca3C04— 3C14Co4—3C3CH, + Co4—3C5,C34

2 2, .3 2 2 2 2
C1C24C31— 3C4C31—3C24C3y + €3y — 3C15C3 1+ 0C19C14C30— 3C14C3p— 351 C30— 3C 465

2 2 2 2 3
C14C24C347H 0C24C31 €347+ 0C14C39C34 0C31C39C34— 31403 = 324 C34— 3¢31034— 3Cape3,+ 265,
2 2 2 2, .3 2
C21C31C41 = 3€31C41 T 0C31C30C41—3€35C41 =351 €= 3C35C] + €4y —3C15Cu0+0C12C13¢4)
2 2 2 2, .3 2
—3¢13C4y+ 0€12C30Can+ 0C32Cy1Can—3€13C4H— 3C30C = 3C41Chp + Cp— 3651 Ca3+0C13C03Cu3

2 2 2 2
C1€23C43— 3C3C43+ 0C21C41Ca3— 3C4Cy3H 0C13C42Ca3+ 0C1CyaCaz— 3C13C53— 3¢9 €3

2 3
—3CyCh3 + Chy -

e3— ey

13



VOLUMES OF POLYTROPES

2 .2 3 2 2 3 2 2
BCipC13 + €13 301514+ 0012C13C14— 3¢13C14 + €31 3¢13C03 0¢13¢14003— 3¢5

2 2, 3 2.2 2 2, 3 _a2.2
C4C33— 309 €3 + Cy3—3C) Cogt 0C14Cx3Co4H 0091 Ca3Co4—3C14Co,— 3Ca3C54 + Cy— 35163

2 2 3 2 2 2 2
00104031 = 3C54C31—3Co4C5, + €31 3C15C30H0C 1€ 43— 3C14C3p— 3C5,C3p— 3C14C3,

' 2 2 2 2 5.3
+0014094C34H0C24C31C34 0€14C30C34+0C31C39Ca4—3C14C34— 3CnC34— 3C31C34— 3C35054 123,
2 2 2 2, 3 1.2 '
00216310417 3¢31C41+0C31C3pC41 = 3C35C41— 3C21C = 3C30C4) + €4y = 3Ci5Ca+0C12C13C
2 2 2 2, 3 a2
—3¢13C4y+ 0€12C30Can+ 0C32Cy1Can—3€13C4H— 3C30C = 3C41Chp + Cp— 3651 Ca3+0C13C03Cu3

2 2 2 2
+0091Cp3C43= 333043+ 0021 C41Cy3— 341 Caz+ 0C13C42Cs3 7+ 0C41C4nCa3— 3C13C43—3¢91C43

2 3
—3CyCh3 + Chy -

Coefficient of cg = 7 —deg(e;, — ej)

e3— ey

13



VOLUMES OF POLYTROPES
3 2 3 2 2 3 2 2
21— 3013 + €3 3¢15C14 0C12€13C14= 3¢15C14 + €31 3C13003+ 0€13014C3— 3¢5
2 2 3 2 2 2 3 2
—3C14Cy3—3C)1Ch5 + Ci3—3C51Co4+0C14Ca3Co4+H0Co1Cr3Co4— 3C14Cou—3C3Co, + Coy—3C5,C34

2 2, .3 2 2 2 2
C1C24C31— 3C4C31—3C24C3y + €3y — 3C15C30 1+ 0C12C14C307 3¢, C3p— 35130 — 3C14C5)

—0 2 2 2 5.3
C14C24C347H 0C24C31 €347 0C14C39C34 0C31C3C34— 3C14C34— 324 C34— 3¢31C34— Capepu+2¢3,
2 2 2 2, .3 2
C21C31C41 = 3€31C41 T 0C31C30C41—3€35C41 =351 €= 3C35C] + €4y —3C15Cu0+0C12C13¢4)
2 2 2 2, .3 2
—3¢13C4y+ 0€12C30Can+ 0C32Cy1Can—3€13C4H— 3C30C = 3C41Chp + Cp— 3651 Ca3+0C13C03Cu3

2 2 2 2
C1€23C43— 3C3C43+ 0C21C41Ca3— 3C4Cy3H 0C13C42Ca3+ 0C1CyaCaz— 3C13C53— 3¢9 €3

2 3
—3CyCh3 + Chy -

Coefficient of CS' = 7 —deg(e;, — ej)

6 ifconv(e; — e, ¢, — €, €, — ¢,) is a triangle

Coefficient of CiiCriCst =
0 otherwise
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VOLUMES OF POLYTROPES

3 2 3 2 3 2 2
2eiy=3cipci3 + ¢ C12C13C14—3C13C14 + €31 3¢(3C03 1 0013¢14C03— 3¢14C03
2 2 2 2 2 3 2
—3C14Cy3—3C)1Ch5 + Ci3—3C51Co4+0C14Ca3Co4+0C51Ca3C04— 3C14Co4—3C3CH, + Co4—3C5,C34

2 2, .3 2 2 2 2
C1C24C31— 3C4C31—3C24C3y + €3y — 3C15C3 1+ 0C19C14C30— 3C14C3p— 351 C30— 3C 465

2 2 2 2 3
C14C24C347H 0C24C31 €347+ 0C14C39C34 0C31C39C34— 31403 = 324 C34— 3¢31034— 3Cape3,+ 265,
2 2 2 2, .3 2
C21C31C41 = 3€31C41 T 0C31C30C41—3€35C41 =351 €= 3C35C] + €4y —3C15Cu0+0C12C13¢4)
2 2 2 2, .3 2
—3¢13C4y+ 0€12C30Can+ 0C32Cy1Can—3€13C4H— 3C30C = 3C41Chp + Cp— 3651 Ca3+0C13C03Cu3

2 2 2 2
C1€23C43— 3C3C43+ 0C21C41Ca3— 3C4Cy3H 0C13C42Ca3+ 0C1CyaCaz— 3C13C53— 3¢9 €3

2 3
—3CyCh3 + Chy -

Coefficient of CS' = 7 —deg(e;, — ej)

. _ [ 6 ifconv(e; — e, e, — €, e, — €, is atriangle
Coefficient of ¢;;c;,c, =

0 otherwise

( . .
—3 ifconv(e; — ¢;, ¢, — ¢)) is an edge of a square

Coefficient of cijc,?l = < and e; — e; incident to triangulating edge

|0 otherwise

13
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K. Berlow, M. Brandenburg, C. Meroni, and I. Shankar. “Intersection Bodies of Polytopes”. Beitrige zur Algebra und
Geometrie 63.2 (June 2022) pp. 419-439.
M. Brandenburg and C. Meroni. Intersection Bodies of Polytopes: Translations and Convexity. 2023. arXiv: 2302.11764 4



INTERSECTION BODIES OF POLYTOPES

DEFINITION:

1
The intersection body of P C R%is IP = {x € R?| p(x) > 1}, where p(x) = ——vol(P N x1).

x|
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INTERSECTION BODIES OF POLYTOPES

DEFINITION:

1
The intersection body of P C R%is IP = {x € R?| p(x) > 1}, where p(x) = ﬂvol(P N x?).
X

cube cube :
— 1,1]3 [0,1]3 icosahedron
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INTERSECTION BODIES OF POLYTOPES

DEFINITION:

1
The intersection body of P C R%is IP = {x € R?| p(x) > 1}, where p(x) = ﬂvol(P N x?).
X

cube cube :
— 1,1]3 [0,1]3 icosahedron

Can we describe the boundary structure of IP?

16



SEMIALGEBRAIC INTERSECTION BODIES

THEOREM (BERLOW-B.-MERONI-SHANKAR):

There exists a central hyperplane arrangement Z (P) such that
within each chamber C of Z'(P), p(x) is a rational function in
variables xy, ..., X :

1
p(x) = —vol(P N xt) = Pcl) forx € C.

[1x] qc(x)

1P
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SEMIALGEBRAIC INTERSECTION BODIES

THEOREM (BERLOW-B.-MERONI-SHANKAR):

There exists a central hyperplane arrangement Z (P) such that
within each chamber C of Z'(P), p(x) is a rational function in

variables xy, ..., X :

1 1
p(x) = ——vol(PNx—) =
|

pcx)

gc(x)

forx € C.

4
X
4
x
X1+ X, 1P 4
X1X%2 _x_2

X1 +X2

X1X2

IP = {x e R?| p(x) > 1}
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SEMIALGEBRAIC INTERSECTION BODIES

THEOREM (BERLOW-B.-MERONI-SHANKAR):

There exists a central hyperplane arrangement Z (P) such that
within each chamber C of Z'(P), p(x) is a rational function in
variables xy, ..., X :

p(x) = LvoI(P Nxt) = Pcl)
| qc(x)

forx € C.

COROLLARY:

The intersection body of a polytope is a semialgebraic set,

i.e. a subset of RY defined by finite unions and intersections of
polynomial inequalities.

4
X
4
x
X1+ X, 1P 4
X1X%2 _x_2

X1 +X2

X1X2

IP = {x e R?| p(x) > 1}

17
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INTERSECTION BODIES OF TRANSLATIONS

translation P + t < rotation of hyperplanes in Z' (P + t)
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INTERSECTION BODIES OF TRANSLATIONS

How does IP behave under translation of P by a vectort € R%?

translation P + ¢t <> rotation of hyperplanes in Z'(P + t)

THEOREM (B.-MERONI):
There exists an Z(P) in the space of translations such that

- within each region of Z(P), the combinatorics of #Z'(P + ¢) is preserved, and

18



INTERSECTION BODIES OF TRANSLATIONS

How does IP behave under translation of P by a vectort € R%?

translation P + ¢t <> rotation of hyperplanes in Z'(P + t)

THEOREM (B.-MERONI):
There exists an Z(P) in the space of translations such that
- within each region of Z(P), the combinatorics of #Z'(P + t) is preserved, and

e« pisa in variables Xy, ..., Xy, ..., 1; :

1 Pc(, 1)
——vol(P+HNxt) = v
|| x]] dew(Xs 1)

18



INTERSECTION BODIES OF TRANSLATIONS

—V‘
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TRANSLATIONS AND CONVEXITY
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TRANSLATIONS AND CONVEXITY

THEOREM (B.-MERONI):

Let P C R? be a polygon. Then IP is convex if and only if
«P=—P, or
- the origin is the midpoint of an edge and P U —P is convex
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TRANSLATIONS AND CONVEXITY

For which t € R% is I(P + t) convex ?

THEOREM (B.-MERONI):

Let P C R? be a polygon. Then IP is convex if and only if
«P=—P, or
- the origin is the midpoint of an edge and P U —P is convex

COROLLARY:

Letk = |{t € R?> | I(P + 1) is convex} |. Then k < 5, and k = 5 <= P is a parallelogram.

— N O N

20



TROPICAL GEOMETRY SEMIALGEBRAIC SETS

VOLUMES

“M. Brandenburg, B. Hollering, and I. Portakal. Combinatorics of Correlated Equilibria. 2022. arXiv: 2209.13938
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GAME THEORY
A (d, % ... X d )—game consists of
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GAME THEORY

A consists of

* n players
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GAME THEORY
A (d, % ... X d )—game consists of

« n players

- each player i has d; strategies
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GAME THEORY
A (d, x ... X d )—game consists of

« n players

- each player i has d; strategies

- The outcome of the game is p € A, ., _; with probability p; ; for each tuple of
strategies (Ji, .., J,), J; € [d]]
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GAME THEORY

A (d, x ... X d )—game consists of
« n players

- each player i has d; strategies

- The outcome of the game is p € A, ., _; with probability p; ; for each tuple of
strategies (Jy, ---,J,), J; € [d}]
. player i has payoff Xj@}. for tuple of strategies (ji, ..., J,)
1...

n
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GAME THEORY

A (d, x ... X d )—game consists of
« n players

- each player i has d; strategies

- The outcome of the game is p € A, ., _; with probability p; ; for each tuple of
strategies (Jy, ---,J,), J; € [d}]
. player i has payoff Xj(i)j for tuple of strategies (ji, ..., J,)
1...

n

(0,0)
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CORRELATED EQUILIBRIUM

Idea: Third party draws recommendation with probability pj..j

(0,0) (1,0)
(0,1) (=99, —99)
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CORRELATED EQUILIBRIUM

Idea: Third party draws recommendation with probability pj..j

Player 1
Player 2

stop
go

stop go

(0,0) (1,0)
(0,1) (=99, - 99)

23



CORRELATED EQUILIBRIUM

Idea: Third party draws recommendation with probability pj..j

PEADy.. q4-11sa
< for each player i € [n], deviating from recommendation does not increase expected payoff

Player 1
E Player 2 stop 90

stop (0,0) (1,0)
go (0,1) (=99, —99)




CORRELATED EQUILIBRIUM

Idea: Third party draws recommendation with probability pj..j

PEADy.. q4-11sa
< for each player i € [n], deviating from recommendation does not increase expected payoff

The set of correlated equilibria of a game is given by linear inequalities

(stop,go)
(go,stop)




CORRELATED EQUILIBRIUM

The set of correlated equilibria is given by

/ ; d dn —_
pjljn 2 Ofor.]i S [di]al S [l’l], and zhl:l Zjn=1 pth = l and
dl ...Adi LN ] dn (l.) — (i) °
IIMEED VR <le---j,-_1kj,~+1---jn Xl ) Pk, 2 O forall K, L€ |dj] and i € [n].
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CORRELATED EQUILIBRIUM

The set of correlated equilibria is given by

pj,..j = Oforj; € [dj],i € [n], and 2j11=1 Zjnzlpjl--'jn =1 and
d ydyd (xO _x® :
Zj1=1 zj,-=1 Zjn=1 (le'“ji—1kji+1'“jn )(jl"'ji—llji+1"',jn)pjl"'ji—lkji+1"'jn 2 Oforallk,/ € [d]and i€ [n].
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CORRELATED EQUILIBRIUM

The set of is given by

: : d d,
p;,..; = Oforj; € [dj],i € [n], and zj11=1 Zjn=1pjl---jn = 1 and

L —

qd Lyh Ly (D) — X °
zj1=1 zjl-:l Zj,,l=1 <)(j1"'ji—lkji+1"'jn )(jl"'ji—llji+l'”’jn pjl"'ji—lkji+1°"jn 2 0 for all k’l = [dl] and 1 € [I’l]

For which (d; X ... X d,)—games is P full-dimensional?
Which combinatorial types can occur?

. subset of payoff space

THEOREM (B.-HOLLERING-PORTAKAL)
The region of full-dimensionality forms a (and can be explicitly described).

24



CORRELATED EQUILIBRIUM

The set of is given by

: : d d,
p;,..; = Oforj; € [dj],i € [n], and zj11=1 Zjn=1pjl---jn = 1 and

L —

G« L (i) —x® '
PINEEEDINEEED I <le---j,~_1kj,-+1---jn le---j,»_lljm---,jn)le---j,-_lkj,-ﬂ---jn 2 Oforallk,/ € [d] and i € [n].
For which (d; X ... X d,)—games is P full-dimensional?

Which combinatorial types can occur?

. subset of payoff space

THEOREM (B.-HOLLERING-PORTAKAL)
The region of full-dimensionality forms a (and can be explicitly described).

THEOREM (B.-HOLLERING-PORTAKAL)

There exists a into semialgebraic sets (“oriented matroid strata”),
such that within each cell the combinatorial type of P is fixed.
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CORRELATED EQUILIBRIUM

THEOREM (CAO03)
Let G be a (2 X 2)—game. Then P is either
e a point, or

« 3—dimensional (full-dimensional) bipyramid
over a triangle.
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CORRELATED EQUILIBRIUM

THEOREM (CAO03)

Let G be a (2 X 2)—game. Then P is either

e a point, or

« 3—dimensional (full-dimensional) bipyramid
over a triangle.

PROPOSITION (B.-HOLLERING-PORTAKAL):

For (2 X 2 X 2)—games, there are at least
14 949 full-dimensional combinatorial types.
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CORRELATED EQUILIBRIUM

THEOREM (CAO03)

Let G be a (2 X 2)—game. Then P is either

e a point, or

« 3—dimensional (full-dimensional) bipyramid
over a triangle.

PROPOSITION (B.-HOLLERING-PORTAKAL):

For (2 X 2 X 2)—games, there are at least
14 949 full-dimensional combinatorial types.

THEOREM (B.-HOLLERING-PORTAKAL)

Let G be a (2 X 3)—game. Then P is either
e a point, or
» a bipyramid over a triangle, or

« 5—dimensional (full-dimensional) and of a
unique combinatorial type.

25



TROPICAL GEOMETRY SEMIALGEBRAIC SETS

VOLUMES
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STARSHIP CRITERION -

STARSHIP CRITERION (B.-LOHO-SINN):

A€ trop+(V§Xn) —> the configuration of points on a tropical /
plane does not contain a

4

.
\,

L]
.

Rank 2 — no)_.; L L’
\s~ P

Rank 3 = no starship

Rank k > 4: There are examples of A € trop+(V§Xn)
rank-3 analogue of

such that the rank-k-analogue of occurs.
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VOLUME POLYNOMIALS OF POLYTROPES

THEOREM (B.-ELIA-ZHANG):

In the 8855-dimensional space of homogenous

polynomials of degree 4, the 27 248 volume

polynomials span a 70-dimensional affine subspace.

Partition Example monomial | Possible coefficients | Coefficient sum
4 ai, -6,-3,-2,-1,0,1,2,3 —20
3+1 a3,a13 —4,0,4,8 320
242 a2,a3, 0,6 300
24+1+1 a12a1303, —12,0,12 —2160
1+1+1+41 a12413414415 0,24 1680

Regular triangulation of F'P;
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CORRELATED EQUILIBRIUM

Unique Combinatorial Types by Dimension
Dimension || 0 3 5 7 9
(2x2) 1 1 0 0
(2 x3) 1 1 1 0 0
(2 x 4) 1 1 1 3 0
(2 x5) 1 1 1 3 4

The number of unique combinatorial types of Pg of each dimension for a (2 X n)-game
in a random sampling of size 100 000.
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